| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2021-06-19 22:05:40 UTC |
|---|
| Updated at | 2021-08-20 00:00:21 UTC |
|---|
| NP-MRD ID | NP0030846 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | (-)-epi-Cedrol |
|---|
| Provided By | JEOL Database |
|---|
| Description | Epi-cedrol is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. (-)-epi-Cedrol is found in Acorus calanus L., Eupatorium adenophorum , Artemisia annua, Artemisia annua L.cultivar Jwarharti , Chamaecyparis formosensis, Chamomilla recutina, Cunninghamia lanceolata, Cupressus sempervirens , Dacrydium elatum, Ganoderma lucidum , Juniperus lucayana, Juniperus virginiana , Lepidozia fauriana, Microcystis aeruginosa, Thuja orientalis , Santalum album , Taiwania cryptomerioides and Tetraclinis articulata. (-)-epi-Cedrol was first documented in 2013 (PMID: 24359620). Based on a literature review a small amount of articles have been published on Epi-cedrol (PMID: 32625036) (PMID: 31696737) (PMID: 30662311). |
|---|
| Structure | [H]O[C@@]1(C([H])([H])[H])C([H])([H])C([H])([H])[C@@]23C([H])([H])[C@]1([H])C(C([H])([H])[H])(C([H])([H])[H])[C@]2([H])C([H])([H])C([H])([H])[C@@]3([H])C([H])([H])[H] InChI=1S/C15H26O/c1-10-5-6-11-13(2,3)12-9-15(10,11)8-7-14(12,4)16/h10-12,16H,5-9H2,1-4H3/t10-,11+,12-,14+,15+/m1/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| (-)-Epicedrol | ChEBI | | (3R,3AS,6S,7R,8as)-3,6,8,8-tetramethyloctahydro-1H-3a,7-methanoazulen-6-ol | ChEBI | | 8-Epi-cedrol | ChEBI | | 8-Epicedrol | ChEBI |
|
|---|
| Chemical Formula | C15H26O |
|---|
| Average Mass | 222.3720 Da |
|---|
| Monoisotopic Mass | 222.19837 Da |
|---|
| IUPAC Name | (1S,2R,5S,7R,8S)-2,6,6,8-tetramethyltricyclo[5.3.1.0^{1,5}]undecan-8-ol |
|---|
| Traditional Name | (1S,2R,5S,7R,8S)-2,6,6,8-tetramethyltricyclo[5.3.1.0^{1,5}]undecan-8-ol |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | [H]O[C@@]1(C([H])([H])[H])C([H])([H])C([H])([H])[C@@]23C([H])([H])[C@]1([H])C(C([H])([H])[H])(C([H])([H])[H])[C@]2([H])C([H])([H])C([H])([H])[C@@]3([H])C([H])([H])[H] |
|---|
| InChI Identifier | InChI=1S/C15H26O/c1-10-5-6-11-13(2,3)12-9-15(10,11)8-7-14(12,4)16/h10-12,16H,5-9H2,1-4H3/t10-,11+,12-,14+,15+/m1/s1 |
|---|
| InChI Key | SVURIXNDRWRAFU-MIBAYGRRSA-N |
|---|
| Experimental Spectra |
|---|
|
| | Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 600 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 100 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 200 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 300 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 400 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 500 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 700 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 800 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 900 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 1000 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, CDCl3, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Predicted Spectra |
|---|
|
| Not Available | | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Classification | Not classified |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | |
|---|
| Predicted Properties | |
|---|
| General References | - Soetaert SS, Van Neste CM, Vandewoestyne ML, Head SR, Goossens A, Van Nieuwerburgh FC, Deforce DL: Differential transcriptome analysis of glandular and filamentous trichomes in Artemisia annua. BMC Plant Biol. 2013 Dec 20;13:220. doi: 10.1186/1471-2229-13-220. [PubMed:24359620 ]
- Navale GR, Sharma P, Said MS, Ramkumar S, Dharne MS, Thulasiram HV, Shinde SS: Enhancing epi-cedrol production in Escherichia coli by fusion expression of farnesyl pyrophosphate synthase and epi-cedrol synthase. Eng Life Sci. 2019 Jul 25;19(9):606-616. doi: 10.1002/elsc.201900103. eCollection 2019 Sep. [PubMed:32625036 ]
- Fadel H, Benayache F, Chalchat JC, Figueredo G, Chalard P, Hazmoune H, Benayache S: Essential oil constituents of Juniperus oxycedrus L. and Cupressus sempervirens L. (Cupressaceae) growing in Aures region of Algeria. Nat Prod Res. 2021 Aug;35(15):2616-2620. doi: 10.1080/14786419.2019.1687473. Epub 2019 Nov 7. [PubMed:31696737 ]
- Aati H, El-Gamal A, Kayser O: Chemical composition and biological activity of the essential oil from the root of Jatropha pelargoniifolia Courb. native to Saudi Arabia. Saudi Pharm J. 2019 Jan;27(1):88-95. doi: 10.1016/j.jsps.2018.09.001. Epub 2018 Sep 11. [PubMed:30662311 ]
- Brown, G. D., et al. (2003). Brown, G. D., et al, Phytochemistry 64, 303 (2003). Phytochem..
|
|---|