Np mrd loader

Record Information
Version2.0
Created at2021-06-19 21:06:18 UTC
Updated at2021-06-29 23:56:52 UTC
NP-MRD IDNP0029494
Secondary Accession NumbersNone
Natural Product Identification
Common Nameastringin
Provided ByJEOL DatabaseJEOL Logo
DescriptionAstringin, also known as (e)-astringin, belongs to the class of organic compounds known as stilbene glycosides. Stilbene glycosides are compounds structurally characterized by the presence of a carbohydrate moiety glycosidically linked to the stilbene skeleton. Thus, astringin is considered to be an aromatic polyketide. astringin is found in Abies nephrolepis, Eskemukerjea megacarpum HARA, Fagopyrum megacarpum, Picea jezoensis, Vitis vinifera and Vitis vinifera . astringin was first documented in 2017 (PMID: 29194377). Based on a literature review a significant number of articles have been published on Astringin (PMID: 33669268) (PMID: 33151680) (PMID: 31023874) (PMID: 33669598) (PMID: 31719245) (PMID: 30892883).
Structure
Thumb
Synonyms
ValueSource
(e)-AstringinChEBI
3,4,3',5'-Tetrahydroxystilbene 3'-glucosideChEBI
Piceatannol 3-beta-D-glucosideChEBI
Piceatannol 3-beta-glucosideChEBI
Piceatannol 3-O-beta-D-glucosideChEBI
Piceatannol 3-b-D-glucosideGenerator
Piceatannol 3-β-D-glucosideGenerator
Piceatannol 3-b-glucosideGenerator
Piceatannol 3-β-glucosideGenerator
Piceatannol 3-O-b-D-glucosideGenerator
Piceatannol 3-O-β-D-glucosideGenerator
trans-AstringinMeSH
3-[(1E)-2-(3,4-Dihydroxyphenyl)ethenyl]-5-hydroxyphenyl beta-D-glucopyranosidePhytoBank
3-[(1E)-2-(3,4-Dihydroxyphenyl)ethenyl]-5-hydroxyphenyl β-D-glucopyranosidePhytoBank
3,4,3’,5’-Tetrahydroxystilbene 3’-glucosidePhytoBank
Chemical FormulaC20H22O9
Average Mass406.3870 Da
Monoisotopic Mass406.12638 Da
IUPAC Name(2S,3R,4S,5S,6R)-2-{3-[(E)-2-(3,4-dihydroxyphenyl)ethenyl]-5-hydroxyphenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol
Traditional Nameastringin
CAS Registry NumberNot Available
SMILES
[H]OC1=C([H])C(\C([H])=C(/[H])C2=C([H])C([H])=C(O[H])C(O[H])=C2[H])=C([H])C(O[C@]2([H])O[C@]([H])(C([H])([H])O[H])[C@@]([H])(O[H])[C@]([H])(O[H])[C@@]2([H])O[H])=C1[H]
InChI Identifier
InChI=1S/C20H22O9/c21-9-16-17(25)18(26)19(27)20(29-16)28-13-6-11(5-12(22)8-13)2-1-10-3-4-14(23)15(24)7-10/h1-8,16-27H,9H2/b2-1+/t16-,17-,18+,19-,20-/m1/s1
InChI KeyPERPNFLGJXUDDW-CUYWLFDKSA-N
Experimental Spectra
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 400 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 125 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 150 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 250 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 175 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 100 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 225 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 200 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 25 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, Dimethylsulfoxide-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 100 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 200 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 300 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 500 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 600 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 700 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 800 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 900 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 1000 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, DMSO-d6, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 50 MHz, dmso, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 150 MHz, dmso, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 250 MHz, dmso, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 175 MHz, dmso, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, dmso, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 100 MHz, dmso, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 225 MHz, dmso, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 200 MHz, dmso, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 125 MHz, dmso, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 25 MHz, dmso, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, dmso, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, dmso, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, dmso, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, dmso, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, dmso, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, dmso, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, dmso, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, dmso, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, dmso, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, dmso, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Abies nephrolepisLOTUS Database
Angophora cordifoliaKNApSAcK Database
Eskemukerjea megacarpum HARAJEOL database
    • Miyaichi, Y., et al, Chem. Pharm. Bull. 54, 136 (2006)
Eucalyptus spp.KNApSAcK Database
Fagopyrum megacarpumLOTUS Database
Guibourtia coleospermaKNApSAcK Database
Picea abiesKNApSAcK Database
Picea engelmanniiKNApSAcK Database
Picea glaucaKNApSAcK Database
Picea glehniiKNApSAcK Database
Picea jezoensisPlant
Picea koraiensisKNApSAcK Database
Picea marianaKNApSAcK Database
Picea obovataKNApSAcK Database
Picea ojanensisKNApSAcK Database
Picea rubensKNApSAcK Database
Picea sitchensisKNApSAcK Database
Rheum spp.KNApSAcK Database
Vitis viniferaLOTUS Database
Vitis vinifera L.Plant
Chemical Taxonomy
Description Belongs to the class of organic compounds known as stilbene glycosides. Stilbene glycosides are compounds structurally characterized by the presence of a carbohydrate moiety glycosidically linked to the stilbene skeleton.
KingdomOrganic compounds
Super ClassPhenylpropanoids and polyketides
ClassStilbenes
Sub ClassStilbene glycosides
Direct ParentStilbene glycosides
Alternative ParentsNot Available
SubstituentsNot Available
Molecular FrameworkAromatic heteromonocyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP0.44ALOGPS
logP0.83ChemAxon
logS-2.7ALOGPS
pKa (Strongest Acidic)8.49ChemAxon
pKa (Strongest Basic)-3ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count9ChemAxon
Hydrogen Donor Count7ChemAxon
Polar Surface Area160.07 ŲChemAxon
Rotatable Bond Count5ChemAxon
Refractivity101.58 m³·mol⁻¹ChemAxon
Polarizability40.84 ųChemAxon
Number of Rings3ChemAxon
BioavailabilityYesChemAxon
Rule of FiveNoChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB097340
KNApSAcK IDC00002870
Chemspider ID4445028
KEGG Compound IDC10245
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkAstringin
METLIN IDNot Available
PubChem CompoundNot Available
PDB IDNot Available
ChEBI ID2899
Good Scents IDNot Available
References
General References
  1. Latva-Maenpaa H, Wufu R, Mulat D, Sarjala T, Saranpaa P, Wahala K: Stability and Photoisomerization of Stilbenes Isolated from the Bark of Norway Spruce Roots. Molecules. 2021 Feb 16;26(4). pii: molecules26041036. doi: 10.3390/molecules26041036. [PubMed:33669268 ]
  2. Gabaston J, Valls Fonayet J, Franc C, Waffo-Teguo P, de Revel G, Hilbert G, Gomes E, Richard T, Merillon JM: Characterization of Stilbene Composition in Grape Berries from Wild Vitis Species in Year-To-Year Harvest. J Agric Food Chem. 2020 Nov 25;68(47):13408-13417. doi: 10.1021/acs.jafc.0c04907. Epub 2020 Nov 5. [PubMed:33151680 ]
  3. Rencoret J, Neiva D, Marques G, Gutierrez A, Kim H, Gominho J, Pereira H, Ralph J, Del Rio JC: Hydroxystilbene Glucosides Are Incorporated into Norway Spruce Bark Lignin. Plant Physiol. 2019 Jul;180(3):1310-1321. doi: 10.1104/pp.19.00344. Epub 2019 Apr 25. [PubMed:31023874 ]
  4. Chen B, Li X, Ouyang X, Liu J, Liu Y, Chen D: Comparison of Ferroptosis-Inhibitory Mechanisms between Ferrostatin-1 and Dietary Stilbenes (Piceatannol and Astringin). Molecules. 2021 Feb 19;26(4). pii: molecules26041092. doi: 10.3390/molecules26041092. [PubMed:33669598 ]
  5. Freyssin A, Page G, Fauconneau B, Rioux Bilan A: Natural stilbenes effects in animal models of Alzheimer's disease. Neural Regen Res. 2020 May;15(5):843-849. doi: 10.4103/1673-5374.268970. [PubMed:31719245 ]
  6. Fernandez-Cruz E, Cerezo AB, Cantos-Villar E, Richard T, Troncoso AM, Garcia-Parrilla MC: Inhibition of VEGFR-2 Phosphorylation and Effects on Downstream Signaling Pathways in Cultivated Human Endothelial Cells by Stilbenes from Vitis Spp. J Agric Food Chem. 2019 Apr 10;67(14):3909-3918. doi: 10.1021/acs.jafc.9b00282. Epub 2019 Mar 28. [PubMed:30892883 ]
  7. Heo KT, Lee B, Son S, Ahn JS, Jang JH, Hong YS: Production of Bioactive 3'-Hydroxystilbene Compounds Using the Flavin-Dependent Monooxygenase Sam5. J Microbiol Biotechnol. 2018 Jul 28;28(7):1105-1111. doi: 10.4014/jmb.1804.04007. [PubMed:30021423 ]
  8. Erasalo H, Hamalainen M, Leppanen T, Maki-Opas I, Laavola M, Haavikko R, Yli-Kauhaluoma J, Moilanen E: Natural Stilbenoids Have Anti-Inflammatory Properties in Vivo and Down-Regulate the Production of Inflammatory Mediators NO, IL6, and MCP1 Possibly in a PI3K/Akt-Dependent Manner. J Nat Prod. 2018 May 25;81(5):1131-1142. doi: 10.1021/acs.jnatprod.7b00384. Epub 2018 May 4. [PubMed:29726680 ]
  9. Francezon N, Meda NR, Stevanovic T: Optimization of Bioactive Polyphenols Extraction from Picea Mariana Bark. Molecules. 2017 Dec 1;22(12). pii: molecules22122118. doi: 10.3390/molecules22122118. [PubMed:29194377 ]
  10. Rojas-Garbanzo C, Zimmermann BF, Schulze-Kaysers N, Schieber A: Characterization of phenolic and other polar compounds in peel and flesh of pink guava (Psidium guajava L. cv. 'Criolla') by ultra-high performance liquid chromatography with diode array and mass spectrometric detection. Food Res Int. 2017 Oct;100(Pt 3):445-453. doi: 10.1016/j.foodres.2016.12.004. Epub 2016 Dec 12. [PubMed:28964367 ]
  11. Rusjan D, Persic M, Likar M, Biniari K, Mikulic-Petkovsek M: Phenolic Responses to Esca-Associated Fungi in Differently Decayed Grapevine Woods from Different Trunk Parts of 'Cabernet Sauvignon'. J Agric Food Chem. 2017 Aug 9;65(31):6615-6624. doi: 10.1021/acs.jafc.7b02188. Epub 2017 Jul 26. [PubMed:28692264 ]
  12. Yamashita Y, Biard A, Hanaya K, Shoji M, Sugai T: Short-step syntheses of naturally occurring polyoxygenated aromatics based on site-selective transformation. Biosci Biotechnol Biochem. 2017 Jul;81(7):1279-1284. doi: 10.1080/09168451.2017.1303362. Epub 2017 Mar 27. [PubMed:28345416 ]
  13. Ganthaler A, Stoggl W, Mayr S, Kranner I, Schuler S, Wischnitzki E, Sehr EM, Fluch S, Trujillo-Moya C: Association genetics of phenolic needle compounds in Norway spruce with variable susceptibility to needle bladder rust. Plant Mol Biol. 2017 Jun;94(3):229-251. doi: 10.1007/s11103-017-0589-5. Epub 2017 Feb 11. [PubMed:28190131 ]
  14. Le TK, Jang HH, Nguyen HT, Doan TT, Lee GY, Park KD, Ahn T, Joung YH, Kang HS, Yun CH: Highly regioselective hydroxylation of polydatin, a resveratrol glucoside, for one-step synthesis of astringin, a piceatannol glucoside, by P450 BM3. Enzyme Microb Technol. 2017 Feb;97:34-42. doi: 10.1016/j.enzmictec.2016.11.003. Epub 2016 Nov 9. [PubMed:28010771 ]
  15. Miyaichi, Y., et al. (2006). Miyaichi, Y., et al, Chem. Pharm. Bull. 54, 136 (2006). Chem. Pharm. Bull..