Record Information |
---|
Version | 2.0 |
---|
Created at | 2021-06-19 21:06:18 UTC |
---|
Updated at | 2021-06-29 23:56:52 UTC |
---|
NP-MRD ID | NP0029494 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | astringin |
---|
Provided By | JEOL Database |
---|
Description | Astringin, also known as (e)-astringin, belongs to the class of organic compounds known as stilbene glycosides. Stilbene glycosides are compounds structurally characterized by the presence of a carbohydrate moiety glycosidically linked to the stilbene skeleton. Thus, astringin is considered to be an aromatic polyketide. astringin is found in Abies nephrolepis, Eskemukerjea megacarpum HARA, Fagopyrum megacarpum, Picea jezoensis, Vitis vinifera and Vitis vinifera . astringin was first documented in 2017 (PMID: 29194377). Based on a literature review a significant number of articles have been published on Astringin (PMID: 33669268) (PMID: 33151680) (PMID: 31023874) (PMID: 33669598) (PMID: 31719245) (PMID: 30892883). |
---|
Structure | [H]OC1=C([H])C(\C([H])=C(/[H])C2=C([H])C([H])=C(O[H])C(O[H])=C2[H])=C([H])C(O[C@]2([H])O[C@]([H])(C([H])([H])O[H])[C@@]([H])(O[H])[C@]([H])(O[H])[C@@]2([H])O[H])=C1[H] InChI=1S/C20H22O9/c21-9-16-17(25)18(26)19(27)20(29-16)28-13-6-11(5-12(22)8-13)2-1-10-3-4-14(23)15(24)7-10/h1-8,16-27H,9H2/b2-1+/t16-,17-,18+,19-,20-/m1/s1 |
---|
Synonyms | Value | Source |
---|
(e)-Astringin | ChEBI | 3,4,3',5'-Tetrahydroxystilbene 3'-glucoside | ChEBI | Piceatannol 3-beta-D-glucoside | ChEBI | Piceatannol 3-beta-glucoside | ChEBI | Piceatannol 3-O-beta-D-glucoside | ChEBI | Piceatannol 3-b-D-glucoside | Generator | Piceatannol 3-β-D-glucoside | Generator | Piceatannol 3-b-glucoside | Generator | Piceatannol 3-β-glucoside | Generator | Piceatannol 3-O-b-D-glucoside | Generator | Piceatannol 3-O-β-D-glucoside | Generator | trans-Astringin | MeSH | 3-[(1E)-2-(3,4-Dihydroxyphenyl)ethenyl]-5-hydroxyphenyl beta-D-glucopyranoside | PhytoBank | 3-[(1E)-2-(3,4-Dihydroxyphenyl)ethenyl]-5-hydroxyphenyl β-D-glucopyranoside | PhytoBank | 3,4,3’,5’-Tetrahydroxystilbene 3’-glucoside | PhytoBank |
|
---|
Chemical Formula | C20H22O9 |
---|
Average Mass | 406.3870 Da |
---|
Monoisotopic Mass | 406.12638 Da |
---|
IUPAC Name | (2S,3R,4S,5S,6R)-2-{3-[(E)-2-(3,4-dihydroxyphenyl)ethenyl]-5-hydroxyphenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol |
---|
Traditional Name | astringin |
---|
CAS Registry Number | Not Available |
---|
SMILES | [H]OC1=C([H])C(\C([H])=C(/[H])C2=C([H])C([H])=C(O[H])C(O[H])=C2[H])=C([H])C(O[C@]2([H])O[C@]([H])(C([H])([H])O[H])[C@@]([H])(O[H])[C@]([H])(O[H])[C@@]2([H])O[H])=C1[H] |
---|
InChI Identifier | InChI=1S/C20H22O9/c21-9-16-17(25)18(26)19(27)20(29-16)28-13-6-11(5-12(22)8-13)2-1-10-3-4-14(23)15(24)7-10/h1-8,16-27H,9H2/b2-1+/t16-,17-,18+,19-,20-/m1/s1 |
---|
InChI Key | PERPNFLGJXUDDW-CUYWLFDKSA-N |
---|
Experimental Spectra |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 400 MHz, DMSO-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, DMSO-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 125 MHz, Dimethylsulfoxide-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, Dimethylsulfoxide-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, Dimethylsulfoxide-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 150 MHz, Dimethylsulfoxide-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 250 MHz, Dimethylsulfoxide-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 175 MHz, Dimethylsulfoxide-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, Dimethylsulfoxide-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 100 MHz, Dimethylsulfoxide-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 225 MHz, Dimethylsulfoxide-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 200 MHz, Dimethylsulfoxide-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 25 MHz, Dimethylsulfoxide-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, Dimethylsulfoxide-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, Dimethylsulfoxide-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, Dimethylsulfoxide-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, Dimethylsulfoxide-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, Dimethylsulfoxide-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, Dimethylsulfoxide-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, Dimethylsulfoxide-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, Dimethylsulfoxide-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, Dimethylsulfoxide-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 100 MHz, DMSO-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, DMSO-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 200 MHz, DMSO-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, DMSO-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 300 MHz, DMSO-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, DMSO-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 500 MHz, DMSO-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, DMSO-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 600 MHz, DMSO-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, DMSO-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 700 MHz, DMSO-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, DMSO-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 800 MHz, DMSO-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, DMSO-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 900 MHz, DMSO-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, DMSO-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 1000 MHz, DMSO-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, DMSO-d6, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Show more...
---|
Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 50 MHz, dmso, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 150 MHz, dmso, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 250 MHz, dmso, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 175 MHz, dmso, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, dmso, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 100 MHz, dmso, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 225 MHz, dmso, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 200 MHz, dmso, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 125 MHz, dmso, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 25 MHz, dmso, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, dmso, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, dmso, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, dmso, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, dmso, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, dmso, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, dmso, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, dmso, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, dmso, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, dmso, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, dmso, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Show more...
---|
Chemical Shift Submissions |
---|
|
| Not Available |
---|
Species |
---|
Species of Origin | | Show more...
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as stilbene glycosides. Stilbene glycosides are compounds structurally characterized by the presence of a carbohydrate moiety glycosidically linked to the stilbene skeleton. |
---|
Kingdom | Organic compounds |
---|
Super Class | Phenylpropanoids and polyketides |
---|
Class | Stilbenes |
---|
Sub Class | Stilbene glycosides |
---|
Direct Parent | Stilbene glycosides |
---|
Alternative Parents | Not Available |
---|
Substituents | Not Available |
---|
Molecular Framework | Aromatic heteromonocyclic compounds |
---|
External Descriptors | Not Available |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
External Links |
---|
HMDB ID | Not Available |
---|
DrugBank ID | Not Available |
---|
Phenol Explorer Compound ID | Not Available |
---|
FoodDB ID | FDB097340 |
---|
KNApSAcK ID | C00002870 |
---|
Chemspider ID | 4445028 |
---|
KEGG Compound ID | C10245 |
---|
BioCyc ID | Not Available |
---|
BiGG ID | Not Available |
---|
Wikipedia Link | Astringin |
---|
METLIN ID | Not Available |
---|
PubChem Compound | Not Available |
---|
PDB ID | Not Available |
---|
ChEBI ID | 2899 |
---|
Good Scents ID | Not Available |
---|
References |
---|
General References | - Latva-Maenpaa H, Wufu R, Mulat D, Sarjala T, Saranpaa P, Wahala K: Stability and Photoisomerization of Stilbenes Isolated from the Bark of Norway Spruce Roots. Molecules. 2021 Feb 16;26(4). pii: molecules26041036. doi: 10.3390/molecules26041036. [PubMed:33669268 ]
- Gabaston J, Valls Fonayet J, Franc C, Waffo-Teguo P, de Revel G, Hilbert G, Gomes E, Richard T, Merillon JM: Characterization of Stilbene Composition in Grape Berries from Wild Vitis Species in Year-To-Year Harvest. J Agric Food Chem. 2020 Nov 25;68(47):13408-13417. doi: 10.1021/acs.jafc.0c04907. Epub 2020 Nov 5. [PubMed:33151680 ]
- Rencoret J, Neiva D, Marques G, Gutierrez A, Kim H, Gominho J, Pereira H, Ralph J, Del Rio JC: Hydroxystilbene Glucosides Are Incorporated into Norway Spruce Bark Lignin. Plant Physiol. 2019 Jul;180(3):1310-1321. doi: 10.1104/pp.19.00344. Epub 2019 Apr 25. [PubMed:31023874 ]
- Chen B, Li X, Ouyang X, Liu J, Liu Y, Chen D: Comparison of Ferroptosis-Inhibitory Mechanisms between Ferrostatin-1 and Dietary Stilbenes (Piceatannol and Astringin). Molecules. 2021 Feb 19;26(4). pii: molecules26041092. doi: 10.3390/molecules26041092. [PubMed:33669598 ]
- Freyssin A, Page G, Fauconneau B, Rioux Bilan A: Natural stilbenes effects in animal models of Alzheimer's disease. Neural Regen Res. 2020 May;15(5):843-849. doi: 10.4103/1673-5374.268970. [PubMed:31719245 ]
- Fernandez-Cruz E, Cerezo AB, Cantos-Villar E, Richard T, Troncoso AM, Garcia-Parrilla MC: Inhibition of VEGFR-2 Phosphorylation and Effects on Downstream Signaling Pathways in Cultivated Human Endothelial Cells by Stilbenes from Vitis Spp. J Agric Food Chem. 2019 Apr 10;67(14):3909-3918. doi: 10.1021/acs.jafc.9b00282. Epub 2019 Mar 28. [PubMed:30892883 ]
- Heo KT, Lee B, Son S, Ahn JS, Jang JH, Hong YS: Production of Bioactive 3'-Hydroxystilbene Compounds Using the Flavin-Dependent Monooxygenase Sam5. J Microbiol Biotechnol. 2018 Jul 28;28(7):1105-1111. doi: 10.4014/jmb.1804.04007. [PubMed:30021423 ]
- Erasalo H, Hamalainen M, Leppanen T, Maki-Opas I, Laavola M, Haavikko R, Yli-Kauhaluoma J, Moilanen E: Natural Stilbenoids Have Anti-Inflammatory Properties in Vivo and Down-Regulate the Production of Inflammatory Mediators NO, IL6, and MCP1 Possibly in a PI3K/Akt-Dependent Manner. J Nat Prod. 2018 May 25;81(5):1131-1142. doi: 10.1021/acs.jnatprod.7b00384. Epub 2018 May 4. [PubMed:29726680 ]
- Francezon N, Meda NR, Stevanovic T: Optimization of Bioactive Polyphenols Extraction from Picea Mariana Bark. Molecules. 2017 Dec 1;22(12). pii: molecules22122118. doi: 10.3390/molecules22122118. [PubMed:29194377 ]
- Rojas-Garbanzo C, Zimmermann BF, Schulze-Kaysers N, Schieber A: Characterization of phenolic and other polar compounds in peel and flesh of pink guava (Psidium guajava L. cv. 'Criolla') by ultra-high performance liquid chromatography with diode array and mass spectrometric detection. Food Res Int. 2017 Oct;100(Pt 3):445-453. doi: 10.1016/j.foodres.2016.12.004. Epub 2016 Dec 12. [PubMed:28964367 ]
- Rusjan D, Persic M, Likar M, Biniari K, Mikulic-Petkovsek M: Phenolic Responses to Esca-Associated Fungi in Differently Decayed Grapevine Woods from Different Trunk Parts of 'Cabernet Sauvignon'. J Agric Food Chem. 2017 Aug 9;65(31):6615-6624. doi: 10.1021/acs.jafc.7b02188. Epub 2017 Jul 26. [PubMed:28692264 ]
- Yamashita Y, Biard A, Hanaya K, Shoji M, Sugai T: Short-step syntheses of naturally occurring polyoxygenated aromatics based on site-selective transformation. Biosci Biotechnol Biochem. 2017 Jul;81(7):1279-1284. doi: 10.1080/09168451.2017.1303362. Epub 2017 Mar 27. [PubMed:28345416 ]
- Ganthaler A, Stoggl W, Mayr S, Kranner I, Schuler S, Wischnitzki E, Sehr EM, Fluch S, Trujillo-Moya C: Association genetics of phenolic needle compounds in Norway spruce with variable susceptibility to needle bladder rust. Plant Mol Biol. 2017 Jun;94(3):229-251. doi: 10.1007/s11103-017-0589-5. Epub 2017 Feb 11. [PubMed:28190131 ]
- Le TK, Jang HH, Nguyen HT, Doan TT, Lee GY, Park KD, Ahn T, Joung YH, Kang HS, Yun CH: Highly regioselective hydroxylation of polydatin, a resveratrol glucoside, for one-step synthesis of astringin, a piceatannol glucoside, by P450 BM3. Enzyme Microb Technol. 2017 Feb;97:34-42. doi: 10.1016/j.enzmictec.2016.11.003. Epub 2016 Nov 9. [PubMed:28010771 ]
- Miyaichi, Y., et al. (2006). Miyaichi, Y., et al, Chem. Pharm. Bull. 54, 136 (2006). Chem. Pharm. Bull..
| Show more...
---|