Record Information |
---|
Version | 2.0 |
---|
Created at | 2021-06-19 20:17:49 UTC |
---|
Updated at | 2021-08-20 00:00:12 UTC |
---|
NP-MRD ID | NP0028397 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | Prunasin |
---|
Provided By | JEOL Database |
---|
Description | Prunasin, also known as (R)-prunasin or prulaurasin, belongs to the class of organic compounds known as cyanogenic glycosides. These are glycosides in which the aglycone moiety contains a cyanide group. Prunasin exists in all living organisms, ranging from bacteria to humans. Prunasin is a primary metabolite. Primary metabolites are metabolically or physiologically essential metabolites. They are directly involved in an organism’s growth, development or reproduction. Prunasin is found in Acacia dealbata, Acacia olgana, Adenocaulon himalaicum, Aruncus dioicus, Camellia sinensis, Carica papaya, Centaurea aspera, Chaenorhinum minus, Gerbera jamesonii, Olinia ventosa, Passiflora edulis, Perilla frutescens, Phyllagathis rotundifolia, Polypodium californicum, Prunus cornuta, Prunus myrtifolia, Prunus salicina, Prunus serrulata, Prunus ssiori, Prunus zippeliana, Psydrax livida, Salix interior, Sanguisorba alpina, Vasconcellea quercifolia, Vauquelinia corymbosa and Vicia sativa. Prunasin was first documented in 2020 (PMID: 33332219). Based on a literature review a small amount of articles have been published on Prunasin (PMID: 34020492) (PMID: 33670310) (PMID: 33328455) (PMID: 32618500). |
---|
Structure | [H]OC([H])([H])[C@@]1([H])O[C@@]([H])(O[C@@]([H])(C#N)C2=C([H])C([H])=C([H])C([H])=C2[H])[C@]([H])(O[H])[C@@]([H])(O[H])[C@]1([H])O[H] InChI=1S/C14H17NO6/c15-6-9(8-4-2-1-3-5-8)20-14-13(19)12(18)11(17)10(7-16)21-14/h1-5,9-14,16-19H,7H2/t9-,10+,11+,12-,13+,14+/m0/s1 |
---|
Synonyms | Value | Source |
---|
(R)-(beta-D-Glucopyranosyloxy)phenylacetonitrile | ChEBI | (R)-alpha-(beta-D-Glucopyranosyloxy)benzene-acetonitrile | ChEBI | (R)-Mandelonitrile beta-D-glucopyranoside | ChEBI | (R)-Mandelonitrile beta-D-glucoside | ChEBI | D-Prunasin | ChEBI | (R)-Prunasin | Kegg | (R)-(b-D-Glucopyranosyloxy)phenylacetonitrile | Generator | (R)-(Β-D-glucopyranosyloxy)phenylacetonitrile | Generator | (R)-a-(b-D-Glucopyranosyloxy)benzene-acetonitrile | Generator | (R)-Α-(β-D-glucopyranosyloxy)benzene-acetonitrile | Generator | (R)-Mandelonitrile b-D-glucopyranoside | Generator | (R)-Mandelonitrile β-D-glucopyranoside | Generator | (R)-Mandelonitrile b-D-glucoside | Generator | (R)-Mandelonitrile β-D-glucoside | Generator | Mandelonitrile-beta-glucoside | HMDB | Prulaurasin | HMDB | Prunasin, (R)-isomer | HMDB | Prunasine | HMDB | (-)-(2R)-Prunasin | HMDB | (-)-Prunasin | HMDB | (2R)-(beta-D-Glucopyranosyloxy)(phenyl)acetonitrile | HMDB | (2R)-Prunasin | HMDB | Prunasin | ChEBI |
|
---|
Chemical Formula | C14H17NO6 |
---|
Average Mass | 295.2879 Da |
---|
Monoisotopic Mass | 295.10559 Da |
---|
IUPAC Name | (2R)-2-phenyl-2-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}acetonitrile |
---|
Traditional Name | (R)-prunasin |
---|
CAS Registry Number | Not Available |
---|
SMILES | [H]OC([H])([H])[C@@]1([H])O[C@@]([H])(O[C@@]([H])(C#N)C2=C([H])C([H])=C([H])C([H])=C2[H])[C@]([H])(O[H])[C@@]([H])(O[H])[C@]1([H])O[H] |
---|
InChI Identifier | InChI=1S/C14H17NO6/c15-6-9(8-4-2-1-3-5-8)20-14-13(19)12(18)11(17)10(7-16)21-14/h1-5,9-14,16-19H,7H2/t9-,10+,11+,12-,13+,14+/m0/s1 |
---|
InChI Key | ZKSZEJFBGODIJW-GMDXDWKASA-N |
---|
Experimental Spectra |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 600 MHz, CD3OD, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, CD3OD, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 100 MHz, CD3OD, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, CD3OD, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 200 MHz, CD3OD, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, CD3OD, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 300 MHz, CD3OD, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, CD3OD, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 400 MHz, CD3OD, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, CD3OD, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 500 MHz, CD3OD, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, CD3OD, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 700 MHz, CD3OD, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, CD3OD, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 800 MHz, CD3OD, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, CD3OD, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 900 MHz, CD3OD, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, CD3OD, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 1000 MHz, CD3OD, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, CD3OD, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Predicted Spectra |
---|
|
| Not Available | Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as cyanogenic glycosides. These are glycosides in which the aglycone moiety contains a cyanide group. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organic oxygen compounds |
---|
Class | Organooxygen compounds |
---|
Sub Class | Carbohydrates and carbohydrate conjugates |
---|
Direct Parent | Cyanogenic glycosides |
---|
Alternative Parents | Not Available |
---|
Substituents | Not Available |
---|
Molecular Framework | Aromatic heteromonocyclic compounds |
---|
External Descriptors | Not Available |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | 8.56 mg/L @ 25 °C (est) | The Good Scents Company Information System | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Williams C, Allison SJ, Phillips RM, Linley PA, Wright CW: An Efficient Method for the Isolation of Toxins from Pteridium aquilinum and Evaluation of Ptaquiloside Against Cancer and Non-cancer Cells. Planta Med. 2021 Aug;87(10-11):892-895. doi: 10.1055/a-1494-3513. Epub 2021 May 21. [PubMed:34020492 ]
- Deng P, Cui B, Zhu H, Phommakoun B, Zhang D, Li Y, Zhao F, Zhao Z: Accumulation Pattern of Amygdalin and Prunasin and Its Correlation with Fruit and Kernel Agronomic Characteristics during Apricot (Prunus armeniaca L.) Kernel Development. Foods. 2021 Feb 11;10(2). pii: foods10020397. doi: 10.3390/foods10020397. [PubMed:33670310 ]
- Zhang D, Zhang L, Chen G, Xu Y, Yang H, Xiao Z, Chen J, Mu Y, Zhang H, Liu W, Liu P: Hepatoprotective effect of Xiayuxue decoction ethyl acetate fraction against carbon tetrachloride-induced liver fibrosis in mice via inducing apoptosis and suppressing activation of hepatic stellate cells. Pharm Biol. 2020 Dec;58(1):1229-1243. doi: 10.1080/13880209.2020.1855212. [PubMed:33332219 ]
- Guillamon JG, Prudencio AS, Yuste JE, Dicenta F, Sanchez-Perez R: Ascorbic acid and prunasin, two candidate biomarkers for endodormancy release in almond flower buds identified by a nontargeted metabolomic study. Hortic Res. 2020 Dec 1;7(1):203. doi: 10.1038/s41438-020-00427-5. [PubMed:33328455 ]
- Tanaka T, Kimura K, Kan K, Katori Y, Michishita K, Nakano H, Sasamoto T: Quantification of amygdalin, prunasin, total cyanide and free cyanide in powdered loquat seeds. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2020 Sep;37(9):1503-1509. doi: 10.1080/19440049.2020.1778186. Epub 2020 Jul 3. [PubMed:32618500 ]
- Seigler, D. S., et al. (2002). Seigler, D. S., et al, Phytochemistry 60, 873 (2002). Phytochem..
|
---|