Np mrd loader

Record Information
Version1.0
Created at2021-06-19 20:07:17 UTC
Updated at2021-06-29 23:54:45 UTC
NP-MRD IDNP0028159
Secondary Accession NumbersNone
Natural Product Identification
Common Nameoleandomycin
Provided ByJEOL DatabaseJEOL Logo
DescriptionOleandomycin is also known as amimycin or matromycin. In humans, oleandomycin is involved in the troleandomycin action pathway. Oleandomycin is a primary metabolite. Primary metabolites are metabolically or physiologically essential metabolites. They are directly involved in an organism’s growth, development or reproduction. oleandomycin is found in Streptomyces, Streptomyces cyanogenus, Streptomyces globisporus and Streptomyces lividans. It was first documented in 2016 (PMID: 27494903). Based on a literature review a significant number of articles have been published on Oleandomycin (PMID: 34254896) (PMID: 33878330) (PMID: 33545126) (PMID: 33463404) (PMID: 33036250) (PMID: 32693204).
Structure
Thumb
Synonyms
ValueSource
AmimycinChEBI
LandomycinChEBI
MatromycinChEBI
RomicilChEBI
Oleandomycin phosphateMeSH
Phosphate, oleandomycinMeSH
Chemical FormulaC35H61NO12
Average Mass687.8680 Da
Monoisotopic Mass687.41938 Da
IUPAC Name(3R,5R,6S,7R,8R,11R,12S,13R,14S,15S)-14-{[(2S,3R,4S,6R)-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-6-hydroxy-12-{[(2R,4S,5S,6S)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-5,7,8,11,13,15-hexamethyl-1,9-dioxaspiro[2.13]hexadecane-4,10-dione
Traditional Nameoleandomycin
CAS Registry NumberNot Available
SMILES
[H]O[C@@]1([H])[C@]([H])(O[C@@]2([H])[C@@]([H])(C([H])([H])[H])C([H])([H])[C@]3(OC3([H])[H])C(=O)[C@]([H])(C([H])([H])[H])[C@@]([H])(O[H])[C@@]([H])(C([H])([H])[H])[C@]([H])(OC(=O)[C@]([H])(C([H])([H])[H])[C@@]([H])(O[C@]3([H])O[C@@]([H])(C([H])([H])[H])[C@]([H])(O[H])[C@@]([H])(OC([H])([H])[H])C3([H])[H])[C@]2([H])C([H])([H])[H])C([H])([H])[H])O[C@]([H])(C([H])([H])[H])C([H])([H])[C@]1([H])N(C([H])([H])[H])C([H])([H])[H]
InChI Identifier
InChI=1S/C35H61NO12/c1-16-14-35(15-43-35)32(40)19(4)27(37)18(3)22(7)46-33(41)21(6)31(47-26-13-25(42-11)28(38)23(8)45-26)20(5)30(16)48-34-29(39)24(36(9)10)12-17(2)44-34/h16-31,34,37-39H,12-15H2,1-11H3/t16-,17+,18-,19+,20+,21+,22+,23-,24-,25-,26-,27-,28-,29+,30-,31-,34-,35+/m0/s1
InChI KeyRZPAKFUAFGMUPI-QESOVKLGSA-N
Experimental Spectra
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 500 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 100 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 200 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 300 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 400 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 600 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 700 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 800 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 900 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 1000 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Predicted Spectra
Not Available
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
StreptomycesJEOL database
    • Kim, B. S., et al, J. Antibiotics 58, 196 (2005)
Streptomyces cyanogenusLOTUS Database
Streptomyces globisporusLOTUS Database
Streptomyces lividansLOTUS Database
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as aminoglycosides. These are molecules or a portion of a molecule composed of amino-modified sugars.
KingdomOrganic compounds
Super ClassOrganic oxygen compounds
ClassOrganooxygen compounds
Sub ClassCarbohydrates and carbohydrate conjugates
Direct ParentAminoglycosides
Alternative Parents
Substituents
  • Aminoglycoside core
  • Macrolide
  • Glycosyl compound
  • O-glycosyl compound
  • Monosaccharide
  • Oxane
  • 1,2-aminoalcohol
  • Amino acid or derivatives
  • Carboxylic acid ester
  • Ketone
  • Lactone
  • Secondary alcohol
  • Tertiary amine
  • Tertiary aliphatic amine
  • Acetal
  • Organoheterocyclic compound
  • Oxacycle
  • Monocarboxylic acid or derivatives
  • Carboxylic acid derivative
  • Dialkyl ether
  • Oxirane
  • Ether
  • Organonitrogen compound
  • Alcohol
  • Carbonyl group
  • Hydrocarbon derivative
  • Organic nitrogen compound
  • Organopnictogen compound
  • Amine
  • Organic oxide
  • Aliphatic heteropolycyclic compound
Molecular FrameworkAliphatic heteropolycyclic compounds
External Descriptors
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP1.46ALOGPS
logP2.98ChemAxon
logS-3.2ALOGPS
pKa (Strongest Acidic)12.67ChemAxon
pKa (Strongest Basic)8.38ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count12ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area165.98 ŲChemAxon
Rotatable Bond Count6ChemAxon
Refractivity173.69 m³·mol⁻¹ChemAxon
Polarizability74.34 ųChemAxon
Number of Rings4ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleYesChemAxon
HMDB IDNot Available
DrugBank IDDB11442
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID10190754
KEGG Compound IDC01946
BioCyc IDOLEANDOMYCIN
BiGG IDNot Available
Wikipedia LinkOleandomycin
METLIN IDNot Available
PubChem CompoundNot Available
PDB IDNot Available
ChEBI ID16869
Good Scents IDNot Available
References
General References
  1. Pereira BFM, Pereira MU, Ferreira RG, Spisso BF: Dietary exposure assessment to macrolide antimicrobial residues through infant formulas marketed in Brazil. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2021 Jul 13:1-17. doi: 10.1080/19440049.2021.1933204. [PubMed:34254896 ]
  2. Nurhafizah Wan Ibrahim W, Kok Leong L, Abdul Razzak L, Musa N, Danish-Daniel M, Catherine Zainathan S, Musa N: Virulence properties and pathogenicity of multidrug-resistant Vibrio harveyi associated with luminescent vibriosis in pacific white shrimp, Penaeus vannamei. J Invertebr Pathol. 2021 Apr 17:107594. doi: 10.1016/j.jip.2021.107594. [PubMed:33878330 ]
  3. Zeng S, Sun J, Chen Z, Xu Q, Wei W, Wang D, Ni BJ: The impact and fate of clarithromycin in anaerobic digestion of waste activated sludge for biogas production. Environ Res. 2021 Apr;195:110792. doi: 10.1016/j.envres.2021.110792. Epub 2021 Feb 2. [PubMed:33545126 ]
  4. Grutes JV, Ferreira RG, Pereira MU, Candido FS, Spisso BF: Development and validation of an LC-MS/MS screening method for macrolide and quinolone residues in baby food. J Environ Sci Health B. 2021;56(3):197-211. doi: 10.1080/03601234.2021.1872324. Epub 2021 Jan 19. [PubMed:33463404 ]
  5. Parisi G, Freda I, Exertier C, Cecchetti C, Gugole E, Cerutti G, D'Auria L, Macone A, Vallone B, Savino C, Montemiglio LC: Dissecting the Cytochrome P450 OleP Substrate Specificity: Evidence for a Preferential Substrate. Biomolecules. 2020 Oct 6;10(10). pii: biom10101411. doi: 10.3390/biom10101411. [PubMed:33036250 ]
  6. Raysyan A, Galvidis IA, Schneider RJ, Eremin SA, Burkin MA: Development of a latex particles-based lateral flow immunoassay for group determination of macrolide antibiotics in breast milk. J Pharm Biomed Anal. 2020 Sep 10;189:113450. doi: 10.1016/j.jpba.2020.113450. Epub 2020 Jul 13. [PubMed:32693204 ]
  7. Grobe S, Wszolek A, Brundiek H, Fekete M, Bornscheuer UT: Highly selective bile acid hydroxylation by the multifunctional bacterial P450 monooxygenase CYP107D1 (OleP). Biotechnol Lett. 2020 May;42(5):819-824. doi: 10.1007/s10529-020-02813-4. Epub 2020 Jan 23. [PubMed:31974648 ]
  8. Risdian C, Mozef T, Wink J: Biosynthesis of Polyketides in Streptomyces. Microorganisms. 2019 May 6;7(5). pii: microorganisms7050124. doi: 10.3390/microorganisms7050124. [PubMed:31064143 ]
  9. Parisi G, Montemiglio LC, Giuffre A, Macone A, Scaglione A, Cerutti G, Exertier C, Savino C, Vallone B: Substrate-induced conformational change in cytochrome P450 OleP. FASEB J. 2019 Feb;33(2):1787-1800. doi: 10.1096/fj.201800450RR. Epub 2018 Sep 12. [PubMed:30207799 ]
  10. Tay JH, Arguelles AJ, DeMars MD 2nd, Zimmerman PM, Sherman DH, Nagorny P: Regiodivergent Glycosylations of 6-Deoxy-erythronolide B and Oleandomycin-Derived Macrolactones Enabled by Chiral Acid Catalysis. J Am Chem Soc. 2017 Jun 28;139(25):8570-8578. doi: 10.1021/jacs.7b03198. Epub 2017 Jun 19. [PubMed:28627172 ]
  11. Laith AA, Ambak MA, Hassan M, Sheriff SM, Nadirah M, Draman AS, Wahab W, Ibrahim WN, Aznan AS, Jabar A, Najiah M: Molecular identification and histopathological study of natural Streptococcus agalactiae infection in hybrid tilapia (Oreochromis niloticus). Vet World. 2017 Jan;10(1):101-111. doi: 10.14202/vetworld.2017.101-111. Epub 2017 Jan 24. [PubMed:28246454 ]
  12. Porter JD, Watson J, Roberts LR, Gill SK, Groves H, Dhariwal J, Almond MH, Wong E, Walton RP, Jones LH, Tregoning J, Kilty I, Johnston SL, Edwards MR: Identification of novel macrolides with antibacterial, anti-inflammatory and type I and III IFN-augmenting activity in airway epithelium. J Antimicrob Chemother. 2016 Oct;71(10):2767-81. doi: 10.1093/jac/dkw222. Epub 2016 Jul 25. [PubMed:27494903 ]
  13. Bryan MA, Hea SY, Mannering SA, Booker R: Demonstration of non-inferiority of a novel combination intramammary antimicrobial in the treatment of clinical mastitis. N Z Vet J. 2016 Nov;64(6):337-42. doi: 10.1080/00480169.2016.1210044. Epub 2016 Jul 27. [PubMed:27430313 ]
  14. Singh P, Singh H, Kim YJ, Mathiyalagan R, Wang C, Yang DC: Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications. Enzyme Microb Technol. 2016 May;86:75-83. doi: 10.1016/j.enzmictec.2016.02.005. Epub 2016 Feb 12. [PubMed:26992796 ]
  15. Montemiglio LC, Parisi G, Scaglione A, Sciara G, Savino C, Vallone B: Functional analysis and crystallographic structure of clotrimazole bound OleP, a cytochrome P450 epoxidase from Streptomyces antibioticus involved in oleandomycin biosynthesis. Biochim Biophys Acta. 2016 Mar;1860(3):465-75. doi: 10.1016/j.bbagen.2015.10.009. Epub 2015 Oct 22. [PubMed:26475642 ]
  16. Kim, B. S., et al. (2005). Kim, B. S., et al, J. Antibiotics 58, 196 (2005). J. Antibiotics.