Np mrd loader

Record Information
Version1.0
Created at2021-06-19 18:57:46 UTC
Updated at2021-06-29 23:53:20 UTC
NP-MRD IDNP0027298
Secondary Accession NumbersNone
Natural Product Identification
Common Namecopalyl diphosphate
Provided ByJEOL DatabaseJEOL Logo
DescriptionCopalyl diphosphate is a primary metabolite. Primary metabolites are metabolically or physiologically essential metabolites. They are directly involved in an organism’s growth, development or reproduction. copalyl diphosphate is found in Arabidopsis thaliana, Cucurbita maxima , Daucus carota , Gibberella fujikuroi, Marah macrocarpus, Nicotiana tabacum , Ocimum sanctum , Oryza sativa , Phaeosphaeria sp. L487, Phyllostachys glauca, Ricinus communis , Triticum aestivum and Zea mays . It was first documented in 2020 (PMID: 32841021). Based on a literature review a significant number of articles have been published on Copalyl diphosphate (PMID: 34254507) (PMID: 34244709) (PMID: 34162328) (PMID: 34133748) (PMID: 34037275) (PMID: 33719315).
Structure
Thumb
Synonyms
ValueSource
(+)-Copalyl diphosphateChEBI
Labdadienyl diphosphateChEBI
(+)-Copalyl diphosphoric acidGenerator
Labdadienyl diphosphoric acidGenerator
Copalyl diphosphoric acidGenerator
Copalyl diphosphateChEBI
5a,9a,10b-Labda-8(20),13-dien-15-yl diphosphateGenerator
5a,9a,10b-Labda-8(20),13-dien-15-yl diphosphoric acidGenerator
5alpha,9alpha,10beta-Labda-8(20),13-dien-15-yl diphosphoric acidGenerator
5Α,9α,10β-labda-8(20),13-dien-15-yl diphosphateGenerator
5Α,9α,10β-labda-8(20),13-dien-15-yl diphosphoric acidGenerator
Chemical FormulaC20H36O7P2
Average Mass450.4490 Da
Monoisotopic Mass450.19363 Da
IUPAC Name[({[(2E)-5-[(1S,4aS,8aS)-5,5,8a-trimethyl-2-methylidene-decahydronaphthalen-1-yl]-3-methylpent-2-en-1-yl]oxy}(hydroxy)phosphoryl)oxy]phosphonic acid
Traditional Namecopalyl diphosphate
CAS Registry NumberNot Available
SMILES
[H]O[P](=O)(O[H])O[P@](=O)(O[H])OC([H])([H])C(\[H])=C(/C([H])([H])[H])C([H])([H])C([H])([H])[C@@]1([H])C(=C([H])[H])C([H])([H])C([H])([H])[C@@]2([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])C([H])([H])C([H])([H])[C@]12C([H])([H])[H]
InChI Identifier
InChI=1S/C20H36O7P2/c1-15(11-14-26-29(24,25)27-28(21,22)23)7-9-17-16(2)8-10-18-19(3,4)12-6-13-20(17,18)5/h11,17-18H,2,6-10,12-14H2,1,3-5H3,(H,24,25)(H2,21,22,23)/b15-11+/t17-,18-,20+/m0/s1
InChI KeyJCAIWDXKLCEQEO-ATPOGHATSA-N
Experimental Spectra
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 500 MHz, D2O, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 100 MHz, D2O, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 200 MHz, D2O, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 300 MHz, D2O, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 400 MHz, D2O, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 600 MHz, D2O, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 700 MHz, D2O, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 800 MHz, D2O, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 900 MHz, D2O, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 1000 MHz, D2O, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Predicted Spectra
Not Available
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Arabidopsis thalianaPlant
Cucurbita maximaPlant
Daucus carotaPlant
Fusarium fujikuroiFungi
Marah macrocarpusPlant
Nicotiana tabacumPlant
Ocimum tenuiflorumPlant
Oryza sativaPlant
Phaeosphaeria sp. L487Fungi
Phyllostachys glaucaPlant
Ricinus communisPlant
Stevia rebaudianaKNApSAcK Database
Taiwania cryptomerioidesKNApSAcK Database
Tripterygium wilfordiiKNApSAcK Database
Triticum aestivumPlant
Zea mays L.Plant
Species Where Detected
Species NameSourceReference
Trichothecium roseumKNApSAcK Database
Chemical Taxonomy
ClassificationNot classified
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP3.5ALOGPS
logP4.61ChemAxon
logS-4.3ALOGPS
pKa (Strongest Acidic)1.77ChemAxon
Physiological Charge-2ChemAxon
Hydrogen Acceptor Count5ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area113.29 ŲChemAxon
Rotatable Bond Count8ChemAxon
Refractivity113.8 m³·mol⁻¹ChemAxon
Polarizability46.14 ųChemAxon
Number of Rings2ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00000876
Chemspider ID4445249
KEGG Compound IDC11901
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem CompoundNot Available
PDB IDNot Available
ChEBI ID30939
Good Scents IDNot Available
References
General References
  1. Faylo JL, Ronnebaum TA, Christianson DW: Assembly-Line Catalysis in Bifunctional Terpene Synthases. Acc Chem Res. 2021 Jul 13. doi: 10.1021/acs.accounts.1c00296. [PubMed:34254507 ]
  2. Itoh A, Nakazato S, Wakabayashi H, Hamano A, Shenton MR, Miyamoto K, Mitsuhashi W, Okada K, Toyomasu T: Functional kaurene-synthase-like diterpene synthases lacking a gamma domain are widely present in Oryza and related species. Biosci Biotechnol Biochem. 2021 Jul 9. pii: 6318364. doi: 10.1093/bbb/zbab127. [PubMed:34244709 ]
  3. He L, Liu H, Cheng C, Xu M, He L, Li L, Yao J, Zhang W, Zhai Z, Luo Q, Sun J, Yang T, Xu S: RNA sequencing reveals transcriptomic changes in tobacco (Nicotiana tabacum) following NtCPS2 knockdown. BMC Genomics. 2021 Jun 23;22(1):467. doi: 10.1186/s12864-021-07796-8. [PubMed:34162328 ]
  4. Yang R, Du Z, Qiu T, Sun J, Shen Y, Huang L: Discovery and Functional Characterization of a Diverse Diterpene Synthase Family in the Medicinal Herb Isodon lophanthoides var. Gerardiana. Plant Cell Physiol. 2021 Jun 16. pii: 6300649. doi: 10.1093/pcp/pcab089. [PubMed:34133748 ]
  5. Chen F, Li Y, Li X, Li W, Xu J, Cao H, Wang Z, Li Y, Soppe WJJ, Liu Y: Ectopic expression of the Arabidopsis florigen gene FLOWERING LOCUS T in seeds enhances seed dormancy via the GA and DOG1 pathways. Plant J. 2021 May 26. doi: 10.1111/tpj.15354. [PubMed:34037275 ]
  6. Derkx A, Baumann U, Cheong J, Mrva K, Sharma N, Pallotta M, Mares D: A Major Locus on Wheat Chromosome 7B Associated With Late-Maturity alpha-Amylase Encodes a Putative ent-Copalyl Diphosphate Synthase. Front Plant Sci. 2021 Feb 26;12:637685. doi: 10.3389/fpls.2021.637685. eCollection 2021. [PubMed:33719315 ]
  7. Ma LT, Wang CH, Hon CY, Lee YR, Chu FH: Discovery and characterization of diterpene synthases in Chamaecyparis formosensis Matsum. which participated in an unprecedented diterpenoid biosynthesis route in conifer. Plant Sci. 2021 Mar;304:110790. doi: 10.1016/j.plantsci.2020.110790. Epub 2020 Dec 9. [PubMed:33568294 ]
  8. Brown R, Jia M, Peters RJ: A pair of threonines mark ent-kaurene synthases for phytohormone biosynthesis. Phytochemistry. 2021 Apr;184:112672. doi: 10.1016/j.phytochem.2021.112672. Epub 2021 Jan 29. [PubMed:33524857 ]
  9. Yang M, Liu G, Yamamura Y, Chen F, Fu J: Divergent Evolution of the Diterpene Biosynthesis Pathway in Tea Plants (Camellia sinensis) Caused by Single Amino Acid Variation of ent-Kaurene Synthase. J Agric Food Chem. 2020 Sep 16;68(37):9930-9939. doi: 10.1021/acs.jafc.0c03488. Epub 2020 Sep 3. [PubMed:32841021 ]
  10. Toyomasu T, Shenton MR, Okada K: Evolution of Labdane-Related Diterpene Synthases in Cereals. Plant Cell Physiol. 2020 Dec 23;61(11):1850-1859. doi: 10.1093/pcp/pcaa106. [PubMed:32810270 ]
  11. Tasnim S, Gries R, Mattsson J: Identification of Three Monofunctional Diterpene Synthases with Specific Enzyme Activities Expressed during Heartwood Formation in Western Redcedar (Thuja plicata) Trees. Plants (Basel). 2020 Aug 12;9(8). pii: plants9081018. doi: 10.3390/plants9081018. [PubMed:32806789 ]
  12. Guo S, Zhang X, Bai Q, Zhao W, Fang Y, Zhou S, Zhao B, He L, Chen J: Cloning and Functional Analysis of Dwarf Gene Mini Plant 1 (MNP1) in Medicago truncatula. Int J Mol Sci. 2020 Jul 14;21(14). pii: ijms21144968. doi: 10.3390/ijms21144968. [PubMed:32674471 ]
  13. Vaccaro MC, Alfieri M, De Tommasi N, Moses T, Goossens A, Leone A: Boosting the Synthesis of Pharmaceutically Active Abietane Diterpenes in S. sclarea Hairy Roots by Engineering the GGPPS and CPPS Genes. Front Plant Sci. 2020 Jun 18;11:924. doi: 10.3389/fpls.2020.00924. eCollection 2020. [PubMed:32625231 ]
  14. Zhang Y, Wang Y, Xing J, Wan J, Wang X, Zhang J, Wang X, Li Z, Zhang M: Copalyl Diphosphate Synthase Mutation Improved Salt Tolerance in Maize (Zea mays. L) via Enhancing Vacuolar Na(+) Sequestration and Maintaining ROS Homeostasis. Front Plant Sci. 2020 May 13;11:457. doi: 10.3389/fpls.2020.00457. eCollection 2020. [PubMed:32477376 ]
  15. Li R, Han Y, Zhang Q, Chang G, Han Y, Li X, Zhang B: Transcriptome Profiling Analysis Reveals Co-regulation of Hormone Pathways in Foxtail Millet during Sclerospora graminicola Infection. Int J Mol Sci. 2020 Feb 12;21(4). pii: ijms21041226. doi: 10.3390/ijms21041226. [PubMed:32059399 ]
  16. Kawasaki, T., et al. (2004). Kawasaki, T., et al, J. Antibiotics 57, 739 (2004). J. Antibiotics.