Np mrd loader

Record Information
Version1.0
Created at2021-01-05 22:37:56 UTC
Updated at2021-07-15 17:13:48 UTC
NP-MRD IDNP0013187
Secondary Accession NumbersNone
Natural Product Identification
Common NameSpliceostatin C
Provided ByNPAtlasNPAtlas Logo
Description Spliceostatin C is found in Burkholderia sp. FERM BP-3421. It was first documented in 2013 (PMID: 23594796). Based on a literature review very few articles have been published on Spliceostatin C (PMID: 25098528) (PMID: 33233740) (PMID: 29943984) (PMID: 27282251) (PMID: 27016602) (PMID: 26202968).
Structure
Thumb
Synonyms
ValueSource
2-[(3S,5S,7S)-7-[(1E,3E)-5-[(2S,3S,5R,6R)-5-{[(2Z,4S)-4-(acetyloxy)-1-hydroxypent-2-en-1-ylidene]amino}-3,6-dimethyloxan-2-yl]-3-methylpenta-1,3-dien-1-yl]-1,6-dioxaspiro[2.5]octan-5-yl]acetateGenerator
Chemical FormulaC28H41NO8
Average Mass519.6350 Da
Monoisotopic Mass519.28322 Da
IUPAC Name2-[(3S,5S,7S)-7-[(1E,3E)-5-[(2S,3S,5R,6R)-5-[(2Z,4S)-4-(acetyloxy)pent-2-enamido]-3,6-dimethyloxan-2-yl]-3-methylpenta-1,3-dien-1-yl]-1,6-dioxaspiro[2.5]octan-5-yl]acetic acid
Traditional Name[(3S,5S,7S)-7-[(1E,3E)-5-[(2S,3S,5R,6R)-5-[(2Z,4S)-4-(acetyloxy)pent-2-enamido]-3,6-dimethyloxan-2-yl]-3-methylpenta-1,3-dien-1-yl]-1,6-dioxaspiro[2.5]octan-5-yl]acetic acid
CAS Registry NumberNot Available
SMILES
C[C@H](OC(C)=O)\C=C/C(=O)N[C@@H]1C[C@H](C)[C@H](C\C=C(/C)\C=C\[C@@H]2C[C@]3(CO3)C[C@@H](CC(O)=O)O2)O[C@@H]1C
InChI Identifier
InChI=1S/C28H41NO8/c1-17(6-9-22-14-28(16-34-28)15-23(37-22)13-27(32)33)7-10-25-18(2)12-24(20(4)36-25)29-26(31)11-8-19(3)35-21(5)30/h6-9,11,18-20,22-25H,10,12-16H2,1-5H3,(H,29,31)(H,32,33)/b9-6+,11-8-,17-7+/t18-,19-,20+,22+,23+,24+,25-,28+/m0/s1
InChI KeyQPCQVHMOLDTVHX-LYSKETOYSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Burkholderia sp. FERM BP-3421NPAtlas
Chemical Taxonomy
ClassificationNot classified
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP3.13ALOGPS
logP2.26ChemAxon
logS-5ALOGPS
pKa (Strongest Acidic)4.36ChemAxon
pKa (Strongest Basic)-0.14ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count7ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area123.69 ŲChemAxon
Rotatable Bond Count11ChemAxon
Refractivity139.08 m³·mol⁻¹ChemAxon
Polarizability58.41 ųChemAxon
Number of Rings3ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleYesChemAxon
NPAtlas IDNPA003548
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID58112401
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound90123548
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. He H, Ratnayake AS, Janso JE, He M, Yang HY, Loganzo F, Shor B, O'Donnell CJ, Koehn FE: Cytotoxic Spliceostatins from Burkholderia sp. and Their Semisynthetic Analogues. J Nat Prod. 2014 Aug 22;77(8):1864-70. doi: 10.1021/np500342m. [PubMed:25098528 ]
  2. Muraoka S, Fukumura K, Hayashi M, Kataoka N, Mayeda A, Kaida D: Rbm38 Reduces the Transcription Elongation Defect of the SMEK2 Gene Caused by Splicing Deficiency. Int J Mol Sci. 2020 Nov 20;21(22). pii: ijms21228799. doi: 10.3390/ijms21228799. [PubMed:33233740 ]
  3. Nicolaou KC, Rhoades D, Kumar SM: Total Syntheses of Thailanstatins A-C, Spliceostatin D, and Analogues Thereof. Stereodivergent Synthesis of Tetrasubstituted Dihydro- and Tetrahydropyrans and Design, Synthesis, Biological Evaluation, and Discovery of Potent Antitumor Agents. J Am Chem Soc. 2018 Jul 5;140(26):8303-8320. doi: 10.1021/jacs.8b04634. Epub 2018 Jun 26. [PubMed:29943984 ]
  4. Satoh T, Kaida D: Upregulation of p27 cyclin-dependent kinase inhibitor and a C-terminus truncated form of p27 contributes to G1 phase arrest. Sci Rep. 2016 Jun 10;6:27829. doi: 10.1038/srep27829. [PubMed:27282251 ]
  5. Yang N, Gibbs JS, Hickman HD, Reynoso GV, Ghosh AK, Bennink JR, Yewdell JW: Defining Viral Defective Ribosomal Products: Standard and Alternative Translation Initiation Events Generate a Common Peptide from Influenza A Virus M2 and M1 mRNAs. J Immunol. 2016 May 1;196(9):3608-17. doi: 10.4049/jimmunol.1502303. Epub 2016 Mar 25. [PubMed:27016602 ]
  6. Koga M, Hayashi M, Kaida D: Splicing inhibition decreases phosphorylation level of Ser2 in Pol II CTD. Nucleic Acids Res. 2015 Sep 30;43(17):8258-67. doi: 10.1093/nar/gkv740. Epub 2015 Jul 21. [PubMed:26202968 ]
  7. Ghosh AK, Chen ZH, Effenberger KA, Jurica MS: Enantioselective total syntheses of FR901464 and spliceostatin A and evaluation of splicing activity of key derivatives. J Org Chem. 2014 Jun 20;79(12):5697-709. doi: 10.1021/jo500800k. Epub 2014 May 30. [PubMed:24873648 ]
  8. Matsushita K, Shimada H, Ueda Y, Inoue M, Hasegawa M, Tomonaga T, Matsubara H, Nomura F: Non-transmissible Sendai virus vector encoding c-myc suppressor FBP-interacting repressor for cancer therapy. World J Gastroenterol. 2014 Apr 21;20(15):4316-28. doi: 10.3748/wjg.v20.i15.4316. [PubMed:24764668 ]
  9. Matsushita K, Tamura M, Tanaka N, Tomonaga T, Matsubara H, Shimada H, Levens D, He L, Liu J, Yoshida M, Nomura F: Interactions between SAP155 and FUSE-binding protein-interacting repressor bridges c-Myc and P27Kip1 expression. Mol Cancer Res. 2013 Jul;11(7):689-98. doi: 10.1158/1541-7786.MCR-12-0673. Epub 2013 Apr 17. [PubMed:23594796 ]