Record Information |
---|
Version | 2.0 |
---|
Created at | 2021-01-05 21:47:53 UTC |
---|
Updated at | 2021-07-15 17:11:40 UTC |
---|
NP-MRD ID | NP0012405 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | (+)-Aristolochene |
---|
Provided By | NPAtlas |
---|
Description | (+)-Aristolochene belongs to the class of organic compounds known as eremophilane, 8,9-secoeremophilane and furoeremophilane sesquiterpenoids. These are sesquiterpenoids with a structure based either on the eremophilane skeleton, its 8,9-seco derivative, or the furoeremophilane skeleton. Eremophilanes have been shown to be derived from eudesmanes by migration of the methyl group at C-10 to C-5. Thus, (+)-aristolochene is considered to be an isoprenoid. (+)-Aristolochene is found in Arabidopsis thaliana, Aristolochia indica , Cinnamomum illicioides, Cymbopogon schoenanthus, Dittrichia graveolens , Dumortiera hirsuta, Laurencia dendroidea, Marsupella emarginata, Nicotiana attenuate, Nicotiana sylvestris, Nicotiana tabacum , Nicotiana tomentosiformis and Penicillium roqueforti. (+)-Aristolochene was first documented in 1981 (PMID: 24420433). Based on a literature review a significant number of articles have been published on (+)-aristolochene (PMID: 34264250) (PMID: 33101231) (PMID: 32955057) (PMID: 32694584) (PMID: 32577964) (PMID: 32399789). |
---|
Structure | [H]C([H])=C(C([H])([H])[H])[C@@]1([H])C([H])([H])C([H])=C2C([H])([H])C([H])([H])C([H])([H])[C@]([H])(C([H])([H])[H])[C@@]2(C([H])([H])[H])C1([H])[H] InChI=1S/C15H24/c1-11(2)13-8-9-14-7-5-6-12(3)15(14,4)10-13/h9,12-13H,1,5-8,10H2,2-4H3/t12-,13-,15+/m0/s1 |
---|
Synonyms | Value | Source |
---|
(1S,7S,8AR)-aristolochene | ChEBI | Aristolochene | ChEBI |
|
---|
Chemical Formula | C15H24 |
---|
Average Mass | 204.3511 Da |
---|
Monoisotopic Mass | 204.18780 Da |
---|
IUPAC Name | (4S,4aR,6S)-4,4a-dimethyl-6-(prop-1-en-2-yl)-1,2,3,4,4a,5,6,7-octahydronaphthalene |
---|
Traditional Name | aristolochene |
---|
CAS Registry Number | Not Available |
---|
SMILES | C[C@H]1CCCC2=CC[C@@H](C[C@]12C)C(C)=C |
---|
InChI Identifier | InChI=1S/C15H24/c1-11(2)13-8-9-14-7-5-6-12(3)15(14,4)10-13/h9,12-13H,1,5-8,10H2,2-4H3/t12-,13-,15+/m0/s1 |
---|
InChI Key | YONHOSLUBQJXPR-KCQAQPDRSA-N |
---|
Experimental Spectra |
---|
|
| Not Available | Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Species Where Detected | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as eremophilane, 8,9-secoeremophilane and furoeremophilane sesquiterpenoids. These are sesquiterpenoids with a structure based either on the eremophilane skeleton, its 8,9-seco derivative, or the furoeremophilane skeleton. Eremophilanes have been shown to be derived from eudesmanes by migration of the methyl group at C-10 to C-5. |
---|
Kingdom | Organic compounds |
---|
Super Class | Lipids and lipid-like molecules |
---|
Class | Prenol lipids |
---|
Sub Class | Sesquiterpenoids |
---|
Direct Parent | Eremophilane, 8,9-secoeremophilane and furoeremophilane sesquiterpenoids |
---|
Alternative Parents | |
---|
Substituents | - Eremophilane sesquiterpenoid
- Branched unsaturated hydrocarbon
- Polycyclic hydrocarbon
- Cyclic olefin
- Unsaturated aliphatic hydrocarbon
- Unsaturated hydrocarbon
- Olefin
- Hydrocarbon
- Aliphatic homopolycyclic compound
|
---|
Molecular Framework | Aliphatic homopolycyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Baker R, Coles HR, Edwards M, Evans DA, Howse PE, Walmsley S: Chemical composition of the frontal gland secretion ofSyntermes soldiers (Isoptera, Termitidae). J Chem Ecol. 1981 Jan;7(1):135-45. doi: 10.1007/BF00988641. [PubMed:24420433 ]
- Huang JQ, Li DM, Li JX, Lin JL, Tian X, Wang LJ, Chen XY, Fang X: 1,10/1,11-Cyclization catalyzed by diverged plant sesquiterpene synthases is dependent on a single residue. Org Biomol Chem. 2021 Aug 5;19(30):6650-6656. doi: 10.1039/d1ob00827g. [PubMed:34264250 ]
- Elmassry MM, Farag MA, Preissner R, Gohlke BO, Piechulla B, Lemfack MC: Sixty-One Volatiles Have Phylogenetic Signals Across Bacterial Domain and Fungal Kingdom. Front Microbiol. 2020 Sep 30;11:557253. doi: 10.3389/fmicb.2020.557253. eCollection 2020. [PubMed:33101231 ]
- Spencer TA, Ditchfield R: A simpler method affords evaluation of pi stabilization by phenylalanine of several biochemical carbocations. Org Biomol Chem. 2020 Oct 7;18(38):7597-7607. doi: 10.1039/d0ob01565b. [PubMed:32955057 ]
- Baba VY, Powell AF, Ivamoto-Suzuki ST, Pereira LFP, Vanzela ALL, Giacomin RM, Strickler SR, Mueller LA, Rodrigues R, Goncalves LSA: Capsidiol-related genes are highly expressed in response to Colletotrichum scovillei during Capsicum annuum fruit development stages. Sci Rep. 2020 Jul 21;10(1):12048. doi: 10.1038/s41598-020-68949-5. [PubMed:32694584 ]
- Maia DS, Lopes CF, Saldanha AA, Silva NL, Sartori ALB, Carollo CA, Sobral MG, Alves SN, Silva DB, de Siqueira JM: Larvicidal effect from different Annonaceae species on Culex quinquefasciatus. Environ Sci Pollut Res Int. 2020 Oct;27(29):36983-36993. doi: 10.1007/s11356-020-08997-6. Epub 2020 Jun 23. [PubMed:32577964 ]
- Rajamanickam S, Nakkeeran S: Flagellin of Bacillus amyloliquefaciens works as a resistance inducer against groundnut bud necrosis virus in chilli (Capsicum annuum L.). Arch Virol. 2020 Jul;165(7):1585-1597. doi: 10.1007/s00705-020-04645-z. Epub 2020 May 12. [PubMed:32399789 ]
- Kojima T, Asakura N, Hasegawa S, Hirasawa T, Mizuno Y, Takemoto D, Katou S: Transcriptional induction of capsidiol synthesis genes by wounding can promote pathogen signal-induced capsidiol synthesis. BMC Plant Biol. 2019 Dec 21;19(1):576. doi: 10.1186/s12870-019-2204-1. [PubMed:31864296 ]
- Nguyen TD, Kwon M, Kim SU, Fischer C, Ro DK: Catalytic Plasticity of Germacrene A Oxidase Underlies Sesquiterpene Lactone Diversification. Plant Physiol. 2019 Nov;181(3):945-960. doi: 10.1104/pp.19.00629. Epub 2019 Sep 18. [PubMed:31534022 ]
- Song N, Ma L, Wang W, Sun H, Wang L, Baldwin IT, Wu J: An ERF2-like transcription factor regulates production of the defense sesquiterpene capsidiol upon Alternaria alternata infection. J Exp Bot. 2019 Oct 24;70(20):5895-5908. doi: 10.1093/jxb/erz327. [PubMed:31294452 ]
- Cai Y, Whitehead P, Chappell J, Chapman KD: Mouse lipogenic proteins promote the co-accumulation of triacylglycerols and sesquiterpenes in plant cells. Planta. 2019 Jul;250(1):79-94. doi: 10.1007/s00425-019-03148-9. Epub 2019 Mar 27. [PubMed:30919065 ]
- Loizzi M, Miller DJ, Allemann RK: Silent catalytic promiscuity in the high-fidelity terpene cyclase delta-cadinene synthase. Org Biomol Chem. 2019 Jan 31;17(5):1206-1214. doi: 10.1039/c8ob02821d. [PubMed:30652178 ]
- Huynh F, Grundy DJ, Jenkins RL, Miller DJ, Allemann RK: Sesquiterpene Synthase-Catalysed Formation of a New Medium-Sized Cyclic Terpenoid Ether from Farnesyl Diphosphate Analogues. Chembiochem. 2018 Sep 4;19(17):1834-1838. doi: 10.1002/cbic.201800218. Epub 2018 Jul 16. [PubMed:29802753 ]
|
---|