Np mrd loader

Record Information
Version2.0
Created at2021-01-05 21:47:53 UTC
Updated at2021-07-15 17:11:40 UTC
NP-MRD IDNP0012405
Secondary Accession NumbersNone
Natural Product Identification
Common Name(+)-Aristolochene
Provided ByNPAtlasNPAtlas Logo
Description(+)-Aristolochene belongs to the class of organic compounds known as eremophilane, 8,9-secoeremophilane and furoeremophilane sesquiterpenoids. These are sesquiterpenoids with a structure based either on the eremophilane skeleton, its 8,9-seco derivative, or the furoeremophilane skeleton. Eremophilanes have been shown to be derived from eudesmanes by migration of the methyl group at C-10 to C-5. Thus, (+)-aristolochene is considered to be an isoprenoid. (+)-Aristolochene is found in Arabidopsis thaliana, Aristolochia indica , Cinnamomum illicioides, Cymbopogon schoenanthus, Dittrichia graveolens , Dumortiera hirsuta, Laurencia dendroidea, Marsupella emarginata, Nicotiana attenuate, Nicotiana sylvestris, Nicotiana tabacum , Nicotiana tomentosiformis and Penicillium roqueforti. (+)-Aristolochene was first documented in 1981 (PMID: 24420433). Based on a literature review a significant number of articles have been published on (+)-aristolochene (PMID: 34264250) (PMID: 33101231) (PMID: 32955057) (PMID: 32694584) (PMID: 32577964) (PMID: 32399789).
Structure
Thumb
Synonyms
ValueSource
(1S,7S,8AR)-aristolocheneChEBI
AristolocheneChEBI
Chemical FormulaC15H24
Average Mass204.3511 Da
Monoisotopic Mass204.18780 Da
IUPAC Name(4S,4aR,6S)-4,4a-dimethyl-6-(prop-1-en-2-yl)-1,2,3,4,4a,5,6,7-octahydronaphthalene
Traditional Namearistolochene
CAS Registry NumberNot Available
SMILES
C[C@H]1CCCC2=CC[C@@H](C[C@]12C)C(C)=C
InChI Identifier
InChI=1S/C15H24/c1-11(2)13-8-9-14-7-5-6-12(3)15(14,4)10-13/h9,12-13H,1,5-8,10H2,2-4H3/t12-,13-,15+/m0/s1
InChI KeyYONHOSLUBQJXPR-KCQAQPDRSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Arabidopsis thalianaPlant
Aristolochia indicaPlant
Cinnamomum illicioidesPlant
Cymbopogon schoenanthusLOTUS Database
Dipterocarpus alatus Roxb.KNApSAcK Database
Dittrichia graveolensPlant
Dumortiera hirsuta-
Laurencia dendroidea-
Marsupella emarginataPlant
Nicotiana attenuatePlant
Nicotiana sylvestrisPlant
Nicotiana tabacumPlant
Nicotiana tomentosiformisPlant
Penicillium roquefortiNPAtlas
Porella arboris-vitaeKNApSAcK Database
Species Where Detected
Species NameSourceReference
Aspergillus terreusKNApSAcK Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as eremophilane, 8,9-secoeremophilane and furoeremophilane sesquiterpenoids. These are sesquiterpenoids with a structure based either on the eremophilane skeleton, its 8,9-seco derivative, or the furoeremophilane skeleton. Eremophilanes have been shown to be derived from eudesmanes by migration of the methyl group at C-10 to C-5.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassPrenol lipids
Sub ClassSesquiterpenoids
Direct ParentEremophilane, 8,9-secoeremophilane and furoeremophilane sesquiterpenoids
Alternative Parents
Substituents
  • Eremophilane sesquiterpenoid
  • Branched unsaturated hydrocarbon
  • Polycyclic hydrocarbon
  • Cyclic olefin
  • Unsaturated aliphatic hydrocarbon
  • Unsaturated hydrocarbon
  • Olefin
  • Hydrocarbon
  • Aliphatic homopolycyclic compound
Molecular FrameworkAliphatic homopolycyclic compounds
External Descriptors
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP5.85ALOGPS
logP4.52ChemAxon
logS-4.9ALOGPS
Physiological Charge0ChemAxon
Hydrogen Acceptor Count0ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area0 ŲChemAxon
Rotatable Bond Count1ChemAxon
Refractivity67.45 m³·mol⁻¹ChemAxon
Polarizability26.14 ųChemAxon
Number of Rings2ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleNoChemAxon
NPAtlas IDNPA001796
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00036300
Chemspider ID570881
KEGG Compound IDC02004
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound656496
PDB IDNot Available
ChEBI ID43445
Good Scents IDNot Available
References
General References
  1. Baker R, Coles HR, Edwards M, Evans DA, Howse PE, Walmsley S: Chemical composition of the frontal gland secretion ofSyntermes soldiers (Isoptera, Termitidae). J Chem Ecol. 1981 Jan;7(1):135-45. doi: 10.1007/BF00988641. [PubMed:24420433 ]
  2. Huang JQ, Li DM, Li JX, Lin JL, Tian X, Wang LJ, Chen XY, Fang X: 1,10/1,11-Cyclization catalyzed by diverged plant sesquiterpene synthases is dependent on a single residue. Org Biomol Chem. 2021 Aug 5;19(30):6650-6656. doi: 10.1039/d1ob00827g. [PubMed:34264250 ]
  3. Elmassry MM, Farag MA, Preissner R, Gohlke BO, Piechulla B, Lemfack MC: Sixty-One Volatiles Have Phylogenetic Signals Across Bacterial Domain and Fungal Kingdom. Front Microbiol. 2020 Sep 30;11:557253. doi: 10.3389/fmicb.2020.557253. eCollection 2020. [PubMed:33101231 ]
  4. Spencer TA, Ditchfield R: A simpler method affords evaluation of pi stabilization by phenylalanine of several biochemical carbocations. Org Biomol Chem. 2020 Oct 7;18(38):7597-7607. doi: 10.1039/d0ob01565b. [PubMed:32955057 ]
  5. Baba VY, Powell AF, Ivamoto-Suzuki ST, Pereira LFP, Vanzela ALL, Giacomin RM, Strickler SR, Mueller LA, Rodrigues R, Goncalves LSA: Capsidiol-related genes are highly expressed in response to Colletotrichum scovillei during Capsicum annuum fruit development stages. Sci Rep. 2020 Jul 21;10(1):12048. doi: 10.1038/s41598-020-68949-5. [PubMed:32694584 ]
  6. Maia DS, Lopes CF, Saldanha AA, Silva NL, Sartori ALB, Carollo CA, Sobral MG, Alves SN, Silva DB, de Siqueira JM: Larvicidal effect from different Annonaceae species on Culex quinquefasciatus. Environ Sci Pollut Res Int. 2020 Oct;27(29):36983-36993. doi: 10.1007/s11356-020-08997-6. Epub 2020 Jun 23. [PubMed:32577964 ]
  7. Rajamanickam S, Nakkeeran S: Flagellin of Bacillus amyloliquefaciens works as a resistance inducer against groundnut bud necrosis virus in chilli (Capsicum annuum L.). Arch Virol. 2020 Jul;165(7):1585-1597. doi: 10.1007/s00705-020-04645-z. Epub 2020 May 12. [PubMed:32399789 ]
  8. Kojima T, Asakura N, Hasegawa S, Hirasawa T, Mizuno Y, Takemoto D, Katou S: Transcriptional induction of capsidiol synthesis genes by wounding can promote pathogen signal-induced capsidiol synthesis. BMC Plant Biol. 2019 Dec 21;19(1):576. doi: 10.1186/s12870-019-2204-1. [PubMed:31864296 ]
  9. Nguyen TD, Kwon M, Kim SU, Fischer C, Ro DK: Catalytic Plasticity of Germacrene A Oxidase Underlies Sesquiterpene Lactone Diversification. Plant Physiol. 2019 Nov;181(3):945-960. doi: 10.1104/pp.19.00629. Epub 2019 Sep 18. [PubMed:31534022 ]
  10. Song N, Ma L, Wang W, Sun H, Wang L, Baldwin IT, Wu J: An ERF2-like transcription factor regulates production of the defense sesquiterpene capsidiol upon Alternaria alternata infection. J Exp Bot. 2019 Oct 24;70(20):5895-5908. doi: 10.1093/jxb/erz327. [PubMed:31294452 ]
  11. Cai Y, Whitehead P, Chappell J, Chapman KD: Mouse lipogenic proteins promote the co-accumulation of triacylglycerols and sesquiterpenes in plant cells. Planta. 2019 Jul;250(1):79-94. doi: 10.1007/s00425-019-03148-9. Epub 2019 Mar 27. [PubMed:30919065 ]
  12. Loizzi M, Miller DJ, Allemann RK: Silent catalytic promiscuity in the high-fidelity terpene cyclase delta-cadinene synthase. Org Biomol Chem. 2019 Jan 31;17(5):1206-1214. doi: 10.1039/c8ob02821d. [PubMed:30652178 ]
  13. Huynh F, Grundy DJ, Jenkins RL, Miller DJ, Allemann RK: Sesquiterpene Synthase-Catalysed Formation of a New Medium-Sized Cyclic Terpenoid Ether from Farnesyl Diphosphate Analogues. Chembiochem. 2018 Sep 4;19(17):1834-1838. doi: 10.1002/cbic.201800218. Epub 2018 Jul 16. [PubMed:29802753 ]