Record Information |
---|
Version | 2.0 |
---|
Created at | 2020-12-09 06:19:52 UTC |
---|
Updated at | 2021-07-15 17:01:33 UTC |
---|
NP-MRD ID | NP0008835 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | Pyocyanine |
---|
Provided By | NPAtlas |
---|
Description | Pyocyanin belongs to the class of organic compounds known as phenazines and derivatives. These are polycyclic aromatic compounds containing a phenazine moiety, which is a linear tricyclic system that consists of a two benzene rings joined by a pyrazine ring. Pyocyanin is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. Pyocyanine is found in Bacillus. Pyocyanine was first documented in 1899 (PMID: 19866929). Based on a literature review a small amount of articles have been published on Pyocyanin (PMID: 27322205) (PMID: 27517959) (PMID: 27559393) (PMID: 27940577). |
---|
Structure | [H]C1=C([H])C([H])=C2N(C3=C([H])C([H])=C([H])C(=O)C3=NC2=C1[H])C([H])([H])[H] InChI=1S/C13H10N2O/c1-15-10-6-3-2-5-9(10)14-13-11(15)7-4-8-12(13)16/h2-8H,1H3 |
---|
Synonyms | Value | Source |
---|
Pyocyanine | HMDB | Pyocyanin | ChEBI |
|
---|
Chemical Formula | C13H10N2O |
---|
Average Mass | 210.2313 Da |
---|
Monoisotopic Mass | 210.07931 Da |
---|
IUPAC Name | 5-methyl-1,5-dihydrophenazin-1-one |
---|
Traditional Name | pyocyanine |
---|
CAS Registry Number | Not Available |
---|
SMILES | CN1C2=CC=CC=C2N=C2C(=O)C=CC=C12 |
---|
InChI Identifier | InChI=1S/C13H10N2O/c1-15-10-6-3-2-5-9(10)14-13-11(15)7-4-8-12(13)16/h2-8H,1H3 |
---|
InChI Key | YNCMLFHHXWETLD-UHFFFAOYSA-N |
---|
Experimental Spectra |
---|
|
| Not Available | Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | Species Name | Source | Reference |
---|
Bacillus | NPAtlas | |
|
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as phenazines and derivatives. These are polycyclic aromatic compounds containing a phenazine moiety, which is a linear tricyclic system that consists of a two benzene rings joined by a pyrazine ring. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organoheterocyclic compounds |
---|
Class | Diazanaphthalenes |
---|
Sub Class | Benzodiazines |
---|
Direct Parent | Phenazines and derivatives |
---|
Alternative Parents | |
---|
Substituents | - Phenazine
- Benzenoid
- Pyrazine
- Heteroaromatic compound
- Vinylogous amide
- Azacycle
- Organic nitrogen compound
- Organic oxygen compound
- Organopnictogen compound
- Organic oxide
- Hydrocarbon derivative
- Organooxygen compound
- Organonitrogen compound
- Aromatic heteropolycyclic compound
|
---|
Molecular Framework | Aromatic heteropolycyclic compounds |
---|
External Descriptors | Not Available |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Jordan EO: BACILLUS PYOCYANEUS AND ITS PIGMENTS. J Exp Med. 1899 Sep 1;4(5-6):627-47. doi: 10.1084/jem.4.5-6.627. [PubMed:19866929 ]
- Jagmann N, Bleicher V, Busche T, Kalinowski J, Philipp B: The guanidinobutyrase GbuA is essential for the alkylquinolone-regulated pyocyanin production during parasitic growth of Pseudomonas aeruginosa in co-culture with Aeromonas hydrophila. Environ Microbiol. 2016 Oct;18(10):3550-3564. doi: 10.1111/1462-2920.13419. Epub 2016 Jul 20. [PubMed:27322205 ]
- Hall S, McDermott C, Anoopkumar-Dukie S, McFarland AJ, Forbes A, Perkins AV, Davey AK, Chess-Williams R, Kiefel MJ, Arora D, Grant GD: Cellular Effects of Pyocyanin, a Secreted Virulence Factor of Pseudomonas aeruginosa. Toxins (Basel). 2016 Aug 9;8(8). pii: toxins8080236. doi: 10.3390/toxins8080236. [PubMed:27517959 ]
- Morkunas B, Gal B, Galloway WR, Hodgkinson JT, Ibbeson BM, Tan YS, Welch M, Spring DR: Discovery of an inhibitor of the production of the Pseudomonas aeruginosa virulence factor pyocyanin in wild-type cells. Beilstein J Org Chem. 2016 Jul 11;12:1428-33. doi: 10.3762/bjoc.12.137. eCollection 2016. [PubMed:27559393 ]
- Costa KC, Glasser NR, Conway SJ, Newman DK: Pyocyanin degradation by a tautomerizing demethylase inhibits Pseudomonas aeruginosa biofilms. Science. 2017 Jan 13;355(6321):170-173. doi: 10.1126/science.aag3180. Epub 2016 Dec 8. [PubMed:27940577 ]
|
---|