Record Information |
---|
Version | 2.0 |
---|
Created at | 2020-12-09 06:13:45 UTC |
---|
Updated at | 2021-07-15 17:01:09 UTC |
---|
NP-MRD ID | NP0008698 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | JS-1 |
---|
Provided By | NPAtlas |
---|
Description | JS-1 is found in Streptomyces sp. 8812. JS-1 was first documented in 2009 (PMID: 19713994). Based on a literature review very few articles have been published on 6,7-dihydroxy-3,4-dihydroisoquinoline-3-carboxylic acid (PMID: 34296587) (PMID: 34190392) (PMID: 34054552) (PMID: 33011650) (PMID: 32454856) (PMID: 31643031). |
---|
Structure | [H]OC(=O)[C@]1([H])N=C([H])C2=C([H])C(O[H])=C(O[H])C([H])=C2C1([H])[H] InChI=1S/C10H9NO4/c12-8-2-5-1-7(10(14)15)11-4-6(5)3-9(8)13/h2-4,7,12-13H,1H2,(H,14,15)/t7-/m1/s1 |
---|
Synonyms | Value | Source |
---|
6,7-Dihydroxy-3,4-dihydroisoquinoline-3-carboxylate | Generator | 2-Propyl-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran | MeSH | JS 1 | MeSH |
|
---|
Chemical Formula | C10H9NO4 |
---|
Average Mass | 207.1850 Da |
---|
Monoisotopic Mass | 207.05316 Da |
---|
IUPAC Name | (3R)-6,7-dihydroxy-3,4-dihydroisoquinoline-3-carboxylic acid |
---|
Traditional Name | (3R)-6,7-dihydroxy-3,4-dihydroisoquinoline-3-carboxylic acid |
---|
CAS Registry Number | Not Available |
---|
SMILES | OC(=O)C1CC2=CC(O)=C(O)C=C2C=N1 |
---|
InChI Identifier | InChI=1S/C10H9NO4/c12-8-2-5-1-7(10(14)15)11-4-6(5)3-9(8)13/h2-4,7,12-13H,1H2,(H,14,15) |
---|
InChI Key | UHZXHQGXRJYUNM-UHFFFAOYSA-N |
---|
Experimental Spectra |
---|
|
| Not Available | Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Chemical Taxonomy |
---|
Classification | Not classified |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Solecka J, Rajnisz A, Laudy AE: A novel isoquinoline alkaloid, DD-carboxypeptidase inhibitor, with antibacterial activity isolated from Streptomyces sp. 8812. Part I: Taxonomy, fermentation, isolation and biological activities. J Antibiot (Tokyo). 2009 Oct;62(10):575-80. doi: 10.1038/ja.2009.85. Epub 2009 Aug 28. [PubMed:19713994 ]
- Ye QN, Zhao CQ, Ping J, Xu LM: [Study on mechanism of salidroside against liver fibrosis by regulating CXCL16]. Zhongguo Zhong Yao Za Zhi. 2021 Jun;46(11):2865-2870. doi: 10.19540/j.cnki.cjcmm.20201224.401. [PubMed:34296587 ]
- Glass JB, Ranjan P, Kretz CB, Nunn BL, Johnson AM, Xu M, McManus J, Stewart FJ: Microbial metabolism and adaptations in Atribacteria-dominated methane hydrate sediments. Environ Microbiol. 2021 Jun 30. doi: 10.1111/1462-2920.15656. [PubMed:34190392 ]
- Ye Q, Zhou Y, Zhao C, Xu L, Ping J: Salidroside Inhibits CCl4-Induced Liver Fibrosis in Mice by Reducing Activation and Migration of HSC Induced by Liver Sinusoidal Endothelial Cell-Derived Exosomal SphK1. Front Pharmacol. 2021 May 13;12:677810. doi: 10.3389/fphar.2021.677810. eCollection 2021. [PubMed:34054552 ]
- Li K, Grooms GM, Khan SM, Hernandez AG, Witola WH, Stec J: Novel acyl carbamates and acyl / diacyl ureas show in vitro efficacy against Toxoplasma gondii and Cryptosporidium parvum. Int J Parasitol Drugs Drug Resist. 2020 Dec;14:80-90. doi: 10.1016/j.ijpddr.2020.08.006. Epub 2020 Aug 25. [PubMed:33011650 ]
- Wu M, Zhou Y, Qin SL, Lin LJ, Ping J, Tao Z, Zhang J, Xu LM, Wu J: Fuzheng Huayu Capsule Attenuates Hepatic Fibrosis by Inhibiting Activation of Hepatic Stellate Cells. Evid Based Complement Alternat Med. 2020 May 12;2020:3468791. doi: 10.1155/2020/3468791. eCollection 2020. [PubMed:32454856 ]
- Ren S, Chen J, Wang Q, Li X, Xu Y, Zhang X, Mu Y, Zhang H, Huang S, Liu P: MicroRNA-744/transforming growth factor beta1 relationship regulates liver cirrhosis. Hepatol Int. 2019 Nov;13(6):814-825. doi: 10.1007/s12072-019-09993-w. Epub 2019 Oct 23. [PubMed:31643031 ]
- Mondal D, Majee MC, Bhattacharya K, Long J, Larionova J, Khusniyarov MM, Chaudhury M: Crossover from Antiferromagnetic to Ferromagnetic Exchange Coupling in a New Family of Bis-(mu-phenoxido)dicopper(II) Complexes: A Comprehensive Magneto-Structural Correlation by Experimental and Theoretical Study. ACS Omega. 2019 Jun 18;4(6):10558-10570. doi: 10.1021/acsomega.8b03656. eCollection 2019 Jun 30. [PubMed:31460154 ]
- Chen Y, Sun W, Kang L, Wang Y, Zhang M, Zhang H, Hu P: Microfluidic co-culture of liver tumor spheroids with stellate cells for the investigation of drug resistance and intercellular interactions. Analyst. 2019 Jul 8;144(14):4233-4240. doi: 10.1039/c9an00612e. [PubMed:31210202 ]
- Huang TJ, Ren JJ, Zhang QQ, Kong YY, Zhang HY, Guo XH, Fan HQ, Liu LX: IGFBPrP1 accelerates autophagy and activation of hepatic stellate cells via mutual regulation between H19 and PI3K/AKT/mTOR pathway. Biomed Pharmacother. 2019 Aug;116:109034. doi: 10.1016/j.biopha.2019.109034. Epub 2019 May 29. [PubMed:31152924 ]
- Peng Y, Yang T, Huang K, Shen L, Tao Y, Liu C: Salvia Miltiorrhiza Ameliorates Liver Fibrosis by Activating Hepatic Natural Killer Cells in Vivo and in Vitro. Front Pharmacol. 2018 Jul 16;9:762. doi: 10.3389/fphar.2018.00762. eCollection 2018. [PubMed:30061833 ]
|
---|