Np mrd loader

Record Information
Version1.0
Created at2020-12-09 05:57:08 UTC
Updated at2021-07-15 17:00:08 UTC
NP-MRD IDNP0008338
Secondary Accession NumbersNone
Natural Product Identification
Common NameGilvsin A
Provided ByNPAtlasNPAtlas Logo
Description Gilvsin A is found in Phellinus gilvus and Phellinus. It was first documented in 2009 (PMID: 19261312). Based on a literature review a significant number of articles have been published on Gilvsin A (PMID: 34588859) (PMID: 34569051) (PMID: 34553697) (PMID: 34552118).
Structure
Thumb
SynonymsNot Available
Chemical FormulaC31H50O2
Average Mass454.7390 Da
Monoisotopic Mass454.38108 Da
IUPAC Name(2S,7R,11R,14R,15R)-14-[(2S,3R)-3-hydroxy-6-methyl-5-methylideneheptan-2-yl]-2,6,6,11,15-pentamethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-1(10)-en-5-one
Traditional Name(2S,7R,11R,14R,15R)-14-[(2S,3R)-3-hydroxy-6-methyl-5-methylideneheptan-2-yl]-2,6,6,11,15-pentamethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-1(10)-en-5-one
CAS Registry NumberNot Available
SMILES
CC(C)C(=C)C[C@@H](O)[C@@H](C)[C@H]1CC[C@@]2(C)C3=C(CC[C@]12C)[C@@]1(C)CCC(=O)C(C)(C)[C@@H]1CC3
InChI Identifier
InChI=1S/C31H50O2/c1-19(2)20(3)18-25(32)21(4)22-12-16-31(9)24-10-11-26-28(5,6)27(33)14-15-29(26,7)23(24)13-17-30(22,31)8/h19,21-22,25-26,32H,3,10-18H2,1-2,4-9H3/t21-,22+,25+,26-,29+,30+,31-/m0/s1
InChI KeyWCVBLXFGDKTIII-QPNNHYJZSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Fuscoporia gilvaFungi
PhellinusNPAtlas
Chemical Taxonomy
ClassificationNot classified
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP6.69ALOGPS
logP7.31ChemAxon
logS-5.6ALOGPS
pKa (Strongest Acidic)19.69ChemAxon
pKa (Strongest Basic)-0.73ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area37.3 ŲChemAxon
Rotatable Bond Count5ChemAxon
Refractivity138.79 m³·mol⁻¹ChemAxon
Polarizability56.96 ųChemAxon
Number of Rings4ChemAxon
BioavailabilityYesChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleNoChemAxon
NPAtlas IDNPA019826
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00048391
Chemspider ID78441545
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound42611990
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Liu HK, Tsai TH, Chang TT, Chou CJ, Lin LC: Lanostane-triterpenoids from the fungus Phellinus gilvus. Phytochemistry. 2009 Mar;70(4):558-63. doi: 10.1016/j.phytochem.2009.01.015. Epub 2009 Mar 2. [PubMed:19261312 ]
  2. Jabborova D, Annapurna K, Al-Sadi AM, Alharbi SA, Datta R, Zuan ATK: Biochar and Arbuscular mycorrhizal fungi mediated enhanced drought tolerance in Okra (Abelmoschus esculentus) plant growth, root morphological traits and physiological properties. Saudi J Biol Sci. 2021 Oct;28(10):5490-5499. doi: 10.1016/j.sjbs.2021.08.016. Epub 2021 Aug 11. [PubMed:34588859 ]
  3. Hanks JE, Larsen J, Campbell A: Factors associated with small lungworm infections in heavily infected sheep in southeast South Australia. Aust Vet J. 2021 Sep 26. doi: 10.1111/avj.13123. [PubMed:34569051 ]
  4. Kharshiing G, Chrungoo NK: Wx alleles in rice: relationship with apparent amylose content of starch and a possible role in rice domestication. J Genet. 2021;100. [PubMed:34553697 ]
  5. Zeng YT, Liu WY, Torng PC, Hwu WL, Lee NC, Lin CY, Chien YH: A pilot study shows the positive effects of continuous airway pressure for treating hypernasal speech in children with infantile-onset Pompe disease. Sci Rep. 2021 Sep 22;11(1):18826. doi: 10.1038/s41598-021-97877-1. [PubMed:34552118 ]