Np mrd loader

Record Information
Version1.0
Created at2020-12-09 00:38:20 UTC
Updated at2021-07-15 16:46:12 UTC
NP-MRD IDNP0003352
Secondary Accession NumbersNone
Natural Product Identification
Common NameMicacocidin
Provided ByNPAtlasNPAtlas Logo
Description Micacocidin is found in Pseudomonas and Pseudomonas sp. 57-250. It was first documented in 2000 (PMID: 10908118). Based on a literature review very few articles have been published on 2-(1-hydroxy-1-{2-[2-(2-hydroxy-6-pentylphenyl)-4,5-dihydro-1,3-thiazol-4-yl]-3-methyl-1,3-thiazolidin-4-yl}-2-methylpropan-2-yl)-4-methyl-4,5-dihydro-1,3-thiazole-4-carboxylic acid (PMID: 31293678) (PMID: 12950179) (PMID: 11714234) (PMID: 30533677) (PMID: 26507693) (PMID: 24202877).
Structure
Thumb
Synonyms
ValueSource
2-(1-Hydroxy-1-{2-[2-(2-hydroxy-6-pentylphenyl)-4,5-dihydro-1,3-thiazol-4-yl]-3-methyl-1,3-thiazolidin-4-yl}-2-methylpropan-2-yl)-4-methyl-4,5-dihydro-1,3-thiazole-4-carboxylateGenerator
Chemical FormulaC27H39N3O4S3
Average Mass565.8100 Da
Monoisotopic Mass565.21027 Da
IUPAC Name(4S)-2-[(1R)-1-hydroxy-1-[(2S,4R)-2-[(4S)-2-(2-hydroxy-6-pentylphenyl)-4,5-dihydro-1,3-thiazol-4-yl]-3-methyl-1,3-thiazolidin-4-yl]-2-methylpropan-2-yl]-4-methyl-4,5-dihydro-1,3-thiazole-4-carboxylic acid
Traditional Name(4S)-2-[(1R)-1-hydroxy-1-[(2S,4R)-2-[(4S)-2-(2-hydroxy-6-pentylphenyl)-4,5-dihydro-1,3-thiazol-4-yl]-3-methyl-1,3-thiazolidin-4-yl]-2-methylpropan-2-yl]-4-methyl-5H-1,3-thiazole-4-carboxylic acid
CAS Registry NumberNot Available
SMILES
CCCCCC1=C(C2=NC(CS2)C2SCC(C(O)C(C)(C)C3=NC(C)(CS3)C(O)=O)N2C)C(O)=CC=C1
InChI Identifier
InChI=1S/C27H39N3O4S3/c1-6-7-8-10-16-11-9-12-19(31)20(16)22-28-17(13-35-22)23-30(5)18(14-36-23)21(32)26(2,3)24-29-27(4,15-37-24)25(33)34/h9,11-12,17-18,21,23,31-32H,6-8,10,13-15H2,1-5H3,(H,33,34)
InChI KeyGGWOUCUSNYVHOC-UHFFFAOYSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
PseudomonasNPAtlas
Pseudomonas sp. 57-250Bacteria
Species Where Detected
Species NameSourceReference
Pseudomonas sp. No.57-250KNApSAcK Database
Chemical Taxonomy
ClassificationNot classified
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP4.14ALOGPS
logP4.7ChemAxon
logS-5.3ALOGPS
pKa (Strongest Acidic)3.61ChemAxon
pKa (Strongest Basic)5.5ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count7ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area105.72 ŲChemAxon
Rotatable Bond Count10ChemAxon
Refractivity155.11 m³·mol⁻¹ChemAxon
Polarizability62.23 ųChemAxon
Number of Rings4ChemAxon
BioavailabilityYesChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleYesChemAxon
NPAtlas IDNPA001634
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID78443897
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound135431043
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Kobayashi S, Ikenishi Y, Takinami Y, Takema M, Sun WY, Ino A, Hayase Y: Preparation and antimicrobial activity of micacocidin. J Antibiot (Tokyo). 2000 May;53(5):532-9. doi: 10.7164/antibiotics.53.532. [PubMed:10908118 ]
  2. Diettrich J, Kage H, Nett M: Genomics-inspired discovery of massiliachelin, an agrochelin epimer from Massilia sp. NR 4-1. Beilstein J Org Chem. 2019 Jun 13;15:1298-1303. doi: 10.3762/bjoc.15.128. eCollection 2019. [PubMed:31293678 ]
  3. Patel HM, Tao J, Walsh CT: Epimerization of an L-cysteinyl to a D-cysteinyl residue during thiazoline ring formation in siderophore chain elongation by pyochelin synthetase from Pseudomonas aeruginosa. Biochemistry. 2003 Sep 9;42(35):10514-27. doi: 10.1021/bi034840c. [PubMed:12950179 ]
  4. Ino A, Kobayashi S, Ueda K, Hidaka S, Hayase Y: Structure-activity relationship of the antimycoplasma antibiotic micacocidin--a preliminary study. J Antibiot (Tokyo). 2001 Sep;54(9):753-6. doi: 10.7164/antibiotics.54.753. [PubMed:11714234 ]
  5. Montecillo AD, Raymundo AK, Papa IA, Aquino GMB, Jacildo AJ, Stothard P, Rosana ARR: Near-Complete Genome Sequence of Ralstonia solanacearum T523, a Phylotype I Tomato Phytopathogen Isolated from the Philippines. Microbiol Resour Announc. 2018 Sep 27;7(12). pii: MRA01048-18. doi: 10.1128/MRA.01048-18. eCollection 2018 Sep. [PubMed:30533677 ]
  6. Kage H, Riva E, Parascandolo JS, Kreutzer MF, Tosin M, Nett M: Chemical chain termination resolves the timing of ketoreduction in a partially reducing iterative type I polyketide synthase. Org Biomol Chem. 2015 Dec 21;13(47):11414-7. doi: 10.1039/c5ob02009c. Epub 2015 Oct 28. [PubMed:26507693 ]
  7. Kreutzer MF, Kage H, Herrmann J, Pauly J, Hermenau R, Muller R, Hoffmeister D, Nett M: Precursor-directed biosynthesis of micacocidin derivatives with activity against Mycoplasma pneumoniae. Org Biomol Chem. 2014 Jan 7;12(1):113-8. doi: 10.1039/c3ob41839a. Epub 2013 Nov 8. [PubMed:24202877 ]
  8. Kage H, Kreutzer MF, Wackler B, Hoffmeister D, Nett M: An iterative type I polyketide synthase initiates the biosynthesis of the antimycoplasma agent micacocidin. Chem Biol. 2013 Jun 20;20(6):764-71. doi: 10.1016/j.chembiol.2013.04.010. [PubMed:23790487 ]
  9. Kreutzer MF, Kage H, Gebhardt P, Wackler B, Saluz HP, Hoffmeister D, Nett M: Biosynthesis of a complex yersiniabactin-like natural product via the mic locus in phytopathogen Ralstonia solanacearum. Appl Environ Microbiol. 2011 Sep;77(17):6117-24. doi: 10.1128/AEM.05198-11. Epub 2011 Jul 1. [PubMed:21724891 ]