Record Information |
---|
Version | 2.0 |
---|
Created at | 2020-11-23 19:41:05 UTC |
---|
Updated at | 2021-08-19 23:59:25 UTC |
---|
NP-MRD ID | NP0002813 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | Coniferin |
---|
Provided By | BMRB |
---|
Description | Coniferin, also known as coniferoside or abietin, belongs to the class of organic compounds known as phenolic glycosides. These are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans, and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-Fructose, and L rhamnose. Coniferin exists in all living organisms, ranging from bacteria to humans. Coniferin is a primary metabolite. Primary metabolites are metabolically or physiologically essential metabolites. They are directly involved in an organism’s growth, development or reproduction. Coniferin is found in Alpinia zerumbet, Angelica archangelica, Apis cerana, Artemisia stolonifera, Balanophora fungosa, Balanophora harlandii, Balanophora japonica, Balanophora laxiflora, Callitris drummondii, Camellia crassicolumna, Cardiocrinum cordatum, Chamaecyparis obtusa, Citrus aurantium, Codonopsis cordifolioidea, Cynomorium songaricum, Daphne oleoides, Echinacea purpurea, Eleutherococcus senticosus, Itoa orientalis, Kalopanax septemlobus, Ligustrum ovalifolium, Linum album, Linum flavum, Mutisia acerosa, Osmanthus armatus, Osmanthus fortunei, Osmanthus heterophyllus, Phellodendron amurense, Phillyrea latifolia, Picea abies, Picea glauca, Picrasma crenata, Polygala chamaebuxus, Rhodiola crenulata, Salacia chinensis, Stachys byzantina, Syringa reticulata, Syringa vulgaris, Thujopsis dolabrata, Valeriana jatamansi, Viscum album, Wedelia prostrata and Zantedeschia aethiopica. Coniferin was first documented in 2013 (PMID: 22689568). Based on a literature review very few articles have been published on Coniferin (PMID: 24490565) (PMID: 33787141) (PMID: 33471829) (PMID: 34177341) (PMID: 32777074) (PMID: 32645754). |
---|
Structure | COC1=C(O[C@@H]2O[C@H](CO)[C@@H](O)[C@H](O)[C@H]2O)C=CC(\C=C\CO)=C1 InChI=1S/C16H22O8/c1-22-11-7-9(3-2-6-17)4-5-10(11)23-16-15(21)14(20)13(19)12(8-18)24-16/h2-5,7,12-21H,6,8H2,1H3/b3-2+/t12-,13-,14+,15-,16-/m1/s1 |
---|
Synonyms | Value | Source |
---|
4-O-(beta-D-Glucosyl)-trans-coniferol | ChEBI | Coniferyl alcohol beta-D-glucoside | ChEBI | 4-O-(b-D-Glucosyl)-trans-coniferol | Generator | 4-O-(Β-D-glucosyl)-trans-coniferol | Generator | Coniferyl alcohol b-D-glucoside | Generator | Coniferyl alcohol β-D-glucoside | Generator | 4-(3-Hydroxyprop-1-en-1-yl)-2-methoxyphenyl beta-D-glucopyranoside | HMDB | 4-(3-Hydroxyprop-1-en-1-yl)-2-methoxyphenyl beta-delta-glucopyranoside | HMDB | Abietin | HMDB | Coniferoside | HMDB | Coniferyl alcohol beta-delta-glucoside | HMDB | Coniferyl alcohol-4-O-beta-D-glucopyranoside | HMDB | (e)-Coniferin | HMDB | 3-(4beta-D-Glucopyranosyloxy-3-methoxy)phenyl-(2E)-propenol | HMDB | 3-(4beta-D-Glucopyranosyloxy-3-methoxy)phenyl-2E-propenol | HMDB | 3-(4Β-D-glucopyranosyloxy-3-methoxy)phenyl-(2E)-propenol | HMDB | 3-(4Β-D-glucopyranosyloxy-3-methoxy)phenyl-2E-propenol | HMDB | 4-(3-Hydroxy-1-propen-1-yl)-2-methoxyphenyl beta-glucopyranoside | HMDB | 4-(3-Hydroxy-1-propen-1-yl)-2-methoxyphenyl β-glucopyranoside | HMDB | 4-Hydroxy-3-methoxy-1-(gamma-hydroxypropenyl)benzene-4-D-glucoside | HMDB | 4-Hydroxy-3-methoxy-1-(γ-hydroxypropenyl)benzene-4-D-glucoside | HMDB | 4-[(1E)-3-Hydroxy-1-propen-1-yl]-2-methoxyphenyl beta-D-glucopyranoside | HMDB | 4-[(1E)-3-Hydroxy-1-propen-1-yl]-2-methoxyphenyl β-D-glucopyranoside | HMDB | Coniferyl alcohol 4-O-glucoside | HMDB | Coniferyl alcohol beta-glucoside | HMDB | Coniferyl alcohol β-glucoside | HMDB | Laricin | HMDB | trans-Coniferin | HMDB | 4-(3-Hydroxy-1-propenyl)-2-methoxyphenyl-beta-D-glucopyranoside | HMDB | 4-(3-Hydroxy-1-propenyl)-2-methoxyphenyl-β-D-glucopyranoside | HMDB | Coniferosid | HMDB | Coniferin | HMDB |
|
---|
Chemical Formula | C16H22O8 |
---|
Average Mass | 342.3411 Da |
---|
Monoisotopic Mass | 342.13147 Da |
---|
IUPAC Name | (2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-{4-[(1E)-3-hydroxyprop-1-en-1-yl]-2-methoxyphenoxy}oxane-3,4,5-triol |
---|
Traditional Name | coniferin |
---|
CAS Registry Number | Not Available |
---|
SMILES | COC1=C(O[C@@H]2O[C@H](CO)[C@@H](O)[C@H](O)[C@H]2O)C=CC(\C=C\CO)=C1 |
---|
InChI Identifier | InChI=1S/C16H22O8/c1-22-11-7-9(3-2-6-17)4-5-10(11)23-16-15(21)14(20)13(19)12(8-18)24-16/h2-5,7,12-21H,6,8H2,1H3/b3-2+/t12-,13-,14+,15-,16-/m1/s1 |
---|
InChI Key | SFLMUHDGSQZDOW-FAOXUISGSA-N |
---|
Experimental Spectra |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 1H NMR Spectrum (1D, 500 MHz, DMSO, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 500 MHz, DMSO, simulated) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 500 MHz, DMSO, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Predicted Spectra |
---|
|
| Not Available | Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as phenolic glycosides. These are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans, and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-Fructose, and L rhamnose. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organic oxygen compounds |
---|
Class | Organooxygen compounds |
---|
Sub Class | Carbohydrates and carbohydrate conjugates |
---|
Direct Parent | Phenolic glycosides |
---|
Alternative Parents | Not Available |
---|
Substituents | Not Available |
---|
Molecular Framework | Aromatic heteromonocyclic compounds |
---|
External Descriptors | Not Available |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Properties | |
---|
Predicted Properties | |
---|
General References | - Fang J, Ramsay A, Paetz C, Tatsis EC, Renouard S, Hano C, Grand E, Fliniaux O, Roscher A, Mesnard F, Schneider B: Concentration kinetics of secoisolariciresinol diglucoside and its biosynthetic precursor coniferin in developing flaxseed. Phytochem Anal. 2013 Jan-Feb;24(1):41-6. doi: 10.1002/pca.2377. Epub 2012 Jun 12. [PubMed:22689568 ]
- Zhang C, Ma Y, Gao HM, Liu XQ, Chen LM, Zhang QW, Wang ZM, Li AP: [Non-alkaloid components from Sophora flavescens]. Zhongguo Zhong Yao Za Zhi. 2013 Oct;38(20):3520-4. [PubMed:24490565 ]
- Wei RR, Ma QG, Sang ZP, Dong JH: [Studies on phenylpropanoids from Eleocharis dulcis and their hepatoprotective activities]. Zhongguo Zhong Yao Za Zhi. 2021 Mar;46(6):1430-1437. doi: 10.19540/j.cnki.cjcmm.20200821.201. [PubMed:33787141 ]
- Baiya S, Pengthaisong S, Kitjaruwankul S, Ketudat Cairns JR: Structural analysis of rice Os4BGlu18 monolignol beta-glucosidase. PLoS One. 2021 Jan 20;16(1):e0241325. doi: 10.1371/journal.pone.0241325. eCollection 2021. [PubMed:33471829 ]
- Yoshioka T, Itagaki Y, Abe Y, Kawahara N, Goda Y, Ozeki Y, Yamada A: NaCl dependent production of coniferin in Alluaudiopsis marnieriana suspension cultured cells. Plant Biotechnol (Tokyo). 2021 Mar 25;38(1):183-186. doi: 10.5511/plantbiotechnology.21.0102a. [PubMed:34177341 ]
- Vaisanen E, Takahashi J, Obudulu O, Bygdell J, Karhunen P, Blokhina O, Laitinen T, Teeri TH, Wingsle G, Fagerstedt KV, Karkonen A: Hunting monolignol transporters: membrane proteomics and biochemical transport assays with membrane vesicles of Norway spruce. J Exp Bot. 2020 Oct 22;71(20):6379-6395. doi: 10.1093/jxb/eraa368. [PubMed:32777074 ]
- Kumar V, Hatan E, Bar E, Davidovich-Rikanati R, Doron-Faigenboim A, Spitzer-Rimon B, Elad Y, Alkan N, Lewinsohn E, Oren-Shamir M: Phenylalanine increases chrysanthemum flower immunity against Botrytis cinerea attack. Plant J. 2020 Sep;104(1):226-240. doi: 10.1111/tpj.14919. Epub 2020 Aug 8. [PubMed:32645754 ]
- Miyagawa Y, Tobimatsu Y, Lam PY, Mizukami T, Sakurai S, Kamitakahara H, Takano T: Possible mechanisms for the generation of phenyl glycoside-type lignin-carbohydrate linkages in lignification with monolignol glucosides. Plant J. 2020 Sep;104(1):156-170. doi: 10.1111/tpj.14913. Epub 2020 Jul 29. [PubMed:32623768 ]
|
---|