Record Information |
---|
Version | 2.0 |
---|
Created at | 2020-10-21 16:38:41 UTC |
---|
Updated at | 2021-07-15 16:45:20 UTC |
---|
NP-MRD ID | NP0001811 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | Tanikolide |
---|
Provided By | NPAtlas |
---|
Description | Tanikolide is found in Bacterium and Lyngbya majuscula. Tanikolide was first documented in 1999 (PMID: 10514329). Based on a literature review very few articles have been published on Tanikolide (PMID: 19572575) (PMID: 20158242) (PMID: 34203787) (PMID: 33006283) (PMID: 32280900) (PMID: 27191198). |
---|
Structure | [H]OC([H])([H])[C@@]1(OC(=O)C([H])([H])C([H])([H])C1([H])[H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] InChI=1S/C17H32O3/c1-2-3-4-5-6-7-8-9-10-13-17(15-18)14-11-12-16(19)20-17/h18H,2-15H2,1H3/t17-/m1/s1 |
---|
Synonyms | Not Available |
---|
Chemical Formula | C17H32O3 |
---|
Average Mass | 284.4400 Da |
---|
Monoisotopic Mass | 284.23514 Da |
---|
IUPAC Name | (6R)-6-(hydroxymethyl)-6-undecyloxan-2-one |
---|
Traditional Name | (6R)-6-(hydroxymethyl)-6-undecyloxan-2-one |
---|
CAS Registry Number | Not Available |
---|
SMILES | CCCCCCCCCCC[C@]1(CO)CCCC(=O)O1 |
---|
InChI Identifier | InChI=1S/C17H32O3/c1-2-3-4-5-6-7-8-9-10-13-17(15-18)14-11-12-16(19)20-17/h18H,2-15H2,1H3/t17-/m1/s1 |
---|
InChI Key | NLAYXWYCDWDTBF-QGZVFWFLSA-N |
---|
Experimental Spectra |
---|
|
| Not Available | Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Chemical Taxonomy |
---|
Classification | Not classified |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
External Links |
---|
NPAtlas ID | NPA019438 |
---|
HMDB ID | Not Available |
---|
DrugBank ID | Not Available |
---|
Phenol Explorer Compound ID | Not Available |
---|
FoodDB ID | Not Available |
---|
KNApSAcK ID | C00049524 |
---|
Chemspider ID | 4440553 |
---|
KEGG Compound ID | Not Available |
---|
BioCyc ID | Not Available |
---|
BiGG ID | Not Available |
---|
Wikipedia Link | Not Available |
---|
METLIN ID | Not Available |
---|
PubChem Compound | Not Available |
---|
PDB ID | Not Available |
---|
ChEBI ID | Not Available |
---|
Good Scents ID | Not Available |
---|
References |
---|
General References | - Singh IP, Milligan KE, Gerwick WH: Tanikolide, a toxic and antifungal lactone from the marine cyanobacterium Lyngbya majuscula. J Nat Prod. 1999 Sep;62(9):1333-5. doi: 10.1021/np990162c. [PubMed:10514329 ]
- Gutierrez M, Andrianasolo EH, Shin WK, Goeger DE, Yokochi A, Schemies J, Jung M, France D, Cornell-Kennon S, Lee E, Gerwick WH: Structural and synthetic investigations of tanikolide dimer, a SIRT2 selective inhibitor, and tanikolide seco-acid from the Madagascar marine cyanobacterium Lyngbya majuscula. J Org Chem. 2009 Aug 7;74(15):5267-75. doi: 10.1021/jo900578j. [PubMed:19572575 ]
- Gutierrez M, Tidgewell K, Capson TL, Engene N, Almanza A, Schemies J, Jung M, Gerwick WH: Malyngolide dimer, a bioactive symmetric cyclodepside from the panamanian marine cyanobacterium Lyngbya majuscula. J Nat Prod. 2010 Apr 23;73(4):709-11. doi: 10.1021/np9005184. [PubMed:20158242 ]
- Breheny J, Kingston C, Doran R, Anes J, Martins M, Fanning S, Guiry PJ: Investigation of the Anti-Methicillin-Resistant Staphylococcus aureus Activity of (+)-Tanikolide- and (+)-Malyngolide-Based Analogues Prepared by Asymmetric Synthesis. Int J Mol Sci. 2021 Jun 15;22(12). pii: ijms22126400. doi: 10.3390/ijms22126400. [PubMed:34203787 ]
- Wang PS, Gong LZ: Palladium-Catalyzed Asymmetric Allylic C-H Functionalization: Mechanism, Stereo- and Regioselectivities, and Synthetic Applications. Acc Chem Res. 2020 Dec 15;53(12):2841-2854. doi: 10.1021/acs.accounts.0c00477. Epub 2020 Oct 2. [PubMed:33006283 ]
- Tang L, Shang J, Song C, Yang R, Shang X, Mao W, Bao D, Tan Q: Untargeted Metabolite Profiling of Antimicrobial Compounds in the Brown Film of Lentinula edodes Mycelium via LC-MS/MS Analysis. ACS Omega. 2020 Mar 27;5(13):7567-7575. doi: 10.1021/acsomega.0c00398. eCollection 2020 Apr 7. [PubMed:32280900 ]
- Akula R, Doran R, Guiry PJ: Highly Enantioselective Formation of alpha-Allyl-alpha-Arylcyclopentanones via Pd-Catalysed Decarboxylative Asymmetric Allylic Alkylation. Chemistry. 2016 Jul 11;22(29):9938-42. doi: 10.1002/chem.201602250. Epub 2016 Jun 14. [PubMed:27191198 ]
- Han X, Dong L, Geng C, Jiao P: Catalytic Asymmetric Synthesis of Isoxazolines from Silyl Nitronates. Org Lett. 2015 Jul 2;17(13):3194-7. doi: 10.1021/acs.orglett.5b00826. Epub 2015 Jun 17. [PubMed:26083080 ]
- Jie Z, Qiuzheng D, Suzhen Z, Fang S, Xinyu L, Zhenzhong Z: Enantioseparation of Three Important Intermediates of Tanikolide with Immobilized Cellulose Chiral Stationary Phase. J Chromatogr Sci. 2015 Jul;53(6):959-62. doi: 10.1093/chromsci/bmu158. Epub 2014 Dec 3. [PubMed:25472803 ]
- Xie Y, Sun M, Zhou H, Cao Q, Gao K, Niu C, Yang H: Enantiospecific total synthesis of (+)-tanikolide via a key [2,3]-Meisenheimer rearrangement with an allylic amine N-oxide-directed epoxidation and a one-pot trichloroisocyanuric acid N-debenzylation and N-chlorination. J Org Chem. 2013 Oct 18;78(20):10251-63. doi: 10.1021/jo4016437. Epub 2013 Oct 2. [PubMed:24053434 ]
- Murai K, Nakamura A, Matsushita T, Shimura M, Fujioka H: C3-symmetric trisimidazoline-catalyzed enantioselective bromolactonization of internal alkenoic acids. Chemistry. 2012 Jul 2;18(27):8448-53. doi: 10.1002/chem.201200647. Epub 2012 May 23. [PubMed:22623128 ]
- Gourdet B, Lam HW: Catalytic asymmetric dihydroxylation of enamides and application to the total synthesis of (+)-tanikolide. Angew Chem Int Ed Engl. 2010 Nov 8;49(46):8733-7. doi: 10.1002/anie.201004328. [PubMed:20886496 ]
- Fujioka H, Matsuda S, Horai M, Fujii E, Morishita M, Nishiguchi N, Hata K, Kita Y: Facile and efficient synthesis of lactols by a domino reaction of 2,3-epoxy alcohols with a hypervalent iodine(III) reagent and its application to the synthesis of lactones and the asymmetric synthesis of (+)-tanikolide. Chemistry. 2007;13(18):5238-48. doi: 10.1002/chem.200601341. [PubMed:17385198 ]
|
---|