Record Information |
---|
Version | 2.0 |
---|
Created at | 2006-05-22 15:12:18 UTC |
---|
Updated at | 2024-09-03 04:17:59 UTC |
---|
NP-MRD ID | NP0001478 |
---|
Natural Product DOI | https://doi.org/10.57994/1245 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | Ellagic acid |
---|
Description | Ellagic acid is an organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. It has a role as an antioxidant, a food additive, a plant metabolite, an EC 5.99.1.2 (DNA topoisomerase) inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an EC 1.14.18.1 (Tyrosinase) inhibitor, an EC 2.3.1.5 (Arylamine N-acetyltransferase) inhibitor, an EC 2.4.1.1 (Glycogen phosphorylase) inhibitor, an EC 2.5.1.18 (Glutathione transferase) inhibitor, an EC 2.7.1.127 (Inositol-trisphosphate 3-kinase) inhibitor, an EC 2.7.1.151 (Inositol-polyphosphate multikinase) inhibitor, an EC 2.7.4.6 (Nucleoside-diphosphate kinase) inhibitor, a skin lightening agent, a fungal metabolite and an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor. It is an organic heterotetracyclic compound, a cyclic ketone, a lactone, a member of catechols and a polyphenol. It derives from a gallic acid. Ellagic acid, also known as ellagate, belongs to the class of organic compounds known as hydrolyzable tannins. These are tannins with a structure characterized by either of the following models. In model 1, the structure contains galloyl units (in some cases, shikimic acid units) that are linked to diverse polyol carbohydrate-, catechin-, or triterpenoid units. In model 2, contains at least two galloyl units C-C coupled to each other, and do not contain a glycosidically linked catechin unit. The antiproliferative and antioxidant properties of ellagic acid have spurred preliminary research into the potential health benefits of ellagic acid consumption. Ellagic acid's therapeutic action mostly involves antioxidant and anti-proliferative/anti-cancer effects. Ellagic acid is found, on average, in the highest concentration within a few different foods, such as chestnuts, common walnuts, and japanese walnuts and in a lower concentration in whiskies, arctic blackberries, and cloudberries. Ellagic acid has also been detected, but not quantified in several different foods, such as lowbush blueberries, bilberries, guava, strawberry guava, and bog bilberries. |
---|
Structure | [H]OC1=C([H])C2=C3C(OC(=O)C4=C([H])C(O[H])=C(O[H])C(OC2=O)=C34)=C1O[H] InChI=1S/C14H6O8/c15-5-1-3-7-8-4(14(20)22-11(7)9(5)17)2-6(16)10(18)12(8)21-13(3)19/h1-2,15-18H |
---|
Synonyms | Value | Source |
---|
2,3,7,8-Tetrahydroxy[1]benzopyrano[5,4,3-cde][1]benzopyran-5,10-dione | ChEBI | 4,4',5,5',6,6'-Hexahydroxydiphenic acid 2,6,2',6'-dilactone | ChEBI | Acide ellagique | ChEBI | Acido elagico | ChEBI | Acidum ellagicum | ChEBI | Benzoaric acid | ChEBI | Ellagsaeure | ChEBI | Lagistase | ChEBI | 4,4',5,5',6,6'-Hexahydroxydiphenate 2,6,2',6'-dilactone | Generator | Benzoarate | Generator | Ellagate | Generator | Alizarine yellow | HMDB | Elagostasine | HMDB | Eleagate | HMDB | Eleagic acid | HMDB | Ellagic acid dihydrate | HMDB | Ellagic acid hydrate | HMDB | Gallogen | HMDB | Llagate | HMDB | Llagic acid | HMDB | Acid, benzoaric | HMDB | Acid, ellagic | HMDB | Ellagic acid | PhytoBank |
|
---|
Chemical Formula | C14H6O8 |
---|
Average Mass | 302.1940 Da |
---|
Monoisotopic Mass | 302.00627 Da |
---|
IUPAC Name | 6,7,13,14-tetrahydroxy-2,9-dioxatetracyclo[6.6.2.0^{4,16}.0^{11,15}]hexadeca-1(15),4,6,8(16),11,13-hexaene-3,10-dione |
---|
Traditional Name | 6,7,13,14-tetrahydroxy-2,9-dioxatetracyclo[6.6.2.0^{4,16}.0^{11,15}]hexadeca-1(15),4,6,8(16),11,13-hexaene-3,10-dione |
---|
CAS Registry Number | 476-66-4 |
---|
SMILES | [H]OC1=C([H])C2=C3C(OC(=O)C4=C([H])C(O[H])=C(O[H])C(OC2=O)=C34)=C1O[H] |
---|
InChI Identifier | InChI=1S/C14H6O8/c15-5-1-3-7-8-4(14(20)22-11(7)9(5)17)2-6(16)10(18)12(8)21-13(3)19/h1-2,15-18H |
---|
InChI Key | AFSDNFLWKVMVRB-UHFFFAOYSA-N |
---|
Experimental Spectra |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 1H NMR Spectrum (1D, 600 MHz, DMSO, simulated) | V.dorna83 | | | 2021-08-23 | View Spectrum | HSQC NMR | [1H, 13C] NMR Spectrum (2D, 600 MHz, C2D6OS, experimental) | bgnzk@missouri.edu | MU Metabolomics Center, University of Missouri, Columbia. MO, USA | Dr. Bharat Goel | 2023-11-07 | View Spectrum | HMBC NMR | [1H, 13C] NMR Spectrum (2D, 600 MHz, C2D6OS, experimental) | bgnzk@missouri.edu | MU Metabolomics Center, University of Missouri, Columbia. MO, USA | Dr. Bharat Goel | 2023-11-07 | View Spectrum | COSY NMR | [1H, 1H] NMR Spectrum (2D, 600 MHz, C2D6OS, experimental) | bgnzk@missouri.edu | MU Metabolomics Center, University of Missouri, Columbia. MO, USA | Dr. Bharat Goel | 2023-11-07 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, C2D6OS, experimental) | bgnzk@missouri.edu | MU Metabolomics Center, University of Missouri, Columbia. MO, USA | Dr. Bharat Goel | 2023-11-07 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, C2D6OS, experimental) | bgnzk@missouri.edu | MU Metabolomics Center, University of Missouri, Columbia. MO, USA | Dr. Bharat Goel | 2023-11-07 | View Spectrum | 2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, 100%_DMSO, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 1H NMR Spectrum (1D, 600 MHz, DMSO, simulated) | v.dorna83@yahoo.com | Not Available | Not Available | 2021-07-26 | View Spectrum |
| Species |
---|
Species of Origin | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as hydrolyzable tannins. These are tannins with a structure characterized by either of the following models. In model 1, the structure contains galloyl units (in some cases, shikimic acid units) that are linked to diverse polyol carbohydrate-, catechin-, or triterpenoid units. In model 2, contains at least two galloyl units C-C coupled to each other, and do not contain a glycosidically linked catechin unit. |
---|
Kingdom | Organic compounds |
---|
Super Class | Phenylpropanoids and polyketides |
---|
Class | Tannins |
---|
Sub Class | Hydrolyzable tannins |
---|
Direct Parent | Hydrolyzable tannins |
---|
Alternative Parents | |
---|
Substituents | - Hydrolyzable tannin
- Ellagic_acid
- 7,8-dihydroxycoumarin
- Coumarin
- Isocoumarin
- Benzopyran
- 2-benzopyran
- 1-benzopyran
- 1-hydroxy-2-unsubstituted benzenoid
- Pyranone
- Benzenoid
- Pyran
- Heteroaromatic compound
- Lactone
- Polyol
- Organoheterocyclic compound
- Oxacycle
- Organooxygen compound
- Hydrocarbon derivative
- Organic oxide
- Organic oxygen compound
- Aromatic heteropolycyclic compound
|
---|
Molecular Framework | Aromatic heteropolycyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Properties | |
---|
Predicted Properties | |
---|
General References | - Stoner GD, Sardo C, Apseloff G, Mullet D, Wargo W, Pound V, Singh A, Sanders J, Aziz R, Casto B, Sun X: Pharmacokinetics of anthocyanins and ellagic acid in healthy volunteers fed freeze-dried black raspberries daily for 7 days. J Clin Pharmacol. 2005 Oct;45(10):1153-64. [PubMed:16172180 ]
- Glover D, Warner ED: The CLUE test. A multiparameter coagulation and fibrinolysis screening test using the platelet aggregometer. Am J Clin Pathol. 1975 Jan;63(1):74-80. [PubMed:1111277 ]
- Banzouzi JT, Prado R, Menan H, Valentin A, Roumestan C, Mallie M, Pelissier Y, Blache Y: In vitro antiplasmodial activity of extracts of Alchornea cordifolia and identification of an active constituent: ellagic acid. J Ethnopharmacol. 2002 Aug;81(3):399-401. [PubMed:12127243 ]
- Cerda B, Espin JC, Parra S, Martinez P, Tomas-Barberan FA: The potent in vitro antioxidant ellagitannins from pomegranate juice are metabolised into bioavailable but poor antioxidant hydroxy-6H-dibenzopyran-6-one derivatives by the colonic microflora of healthy humans. Eur J Nutr. 2004 Aug;43(4):205-20. Epub 2004 Jan 6. [PubMed:15309440 ]
- Kaiser B, Fareed J, Hoppensteadt D, Birdsong B, Walenga JM, Markwardt F: Influence of recombinant hirudin and unfractionated heparin on thrombin and factor Xa generation in extrinsic and intrinsic activated systems. Thromb Res. 1992 Jan 15;65(2):157-64. [PubMed:1579892 ]
- Jimenez F, Mitts TF, Liu K, Wang Y, Hinek A: Ellagic and tannic acids protect newly synthesized elastic fibers from premature enzymatic degradation in dermal fibroblast cultures. J Invest Dermatol. 2006 Jun;126(6):1272-80. [PubMed:16601672 ]
|
---|