Np mrd loader

You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on NP-MRD.
Record Information
Version1.0
Created at2012-09-11 17:31:42 UTC
Updated at2021-08-19 23:59:08 UTC
NP-MRD IDNP0001455
Secondary Accession NumbersNone
Natural Product Identification
Common Name4-Methylbenzaldehyde
Description4-Methylbenzaldehyde, also known as p-toluylaldehyde or p-formyltoluene, belongs to the class of organic compounds known as benzoyl derivatives. A tolualdehyde compound with the methyl substituent at the 4-position. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). 4-Methylbenzaldehyde is a cherry and fruity tasting compound. 4-Methylbenzaldehyde has been detected, but not quantified, in several different foods, such as caraway, sweet cherries, tea, nuts, and coffee and coffee products.
Structure
Thumb
Synonyms
ValueSource
4-TolualdehydeChEBI
4-ToluylaldehydeChEBI
p-FormyltolueneChEBI
p-MethylbenzaldehydeChEBI
p-ToluylaldehydeChEBI
p-TolylaldehydeChEBI
Para-methylbenzaldehydeChEBI
Para-tolualdehydeChEBI
Para-toluyl aldehydeChEBI
ParatolualdehydeChEBI
PTALChEBI
4-Methyl-benzaldehydeHMDB
p-TolualdehydeHMDB
p-Toluic aldehydeHMDB
4-MethylbenzaldehydeChEBI
Chemical FormulaC8H8O
Average Mass120.1485 Da
Monoisotopic Mass120.05751 Da
IUPAC Name4-methylbenzaldehyde
Traditional NameP-tolualdehyde
CAS Registry Number104-87-0
SMILES
CC1=CC=C(C=O)C=C1
InChI Identifier
InChI=1S/C8H8O/c1-7-2-4-8(6-9)5-3-7/h2-6H,1H3
InChI KeyFXLOVSHXALFLKQ-UHFFFAOYSA-N
Experimental Spectra
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Artemisia minorKNApSAcK Database
Aspalathus linearisLOTUS Database
Carum carviFooDB
Cichorium endiviaLOTUS Database
Coffea arabica L.FooDB
    • Shmuel Yannai Dictionary of Food Compounds with CD-ROM: Additives, Flavors, and Ingredients. Chap...
Coffea canephoraFooDB
    • Shmuel Yannai Dictionary of Food Compounds with CD-ROM: Additives, Flavors, and Ingredients. Chap...
Dactylanthus tayloriiLOTUS Database
Gossypium hirsutumLOTUS Database
Homo sapiensLOTUS Database
Prunus aviumFooDB
    • Bernalte, M. J., Hernandez, M. T., Vidal-Aragon, M. C. & Sabio, E. (1999) Physical, chemical, fla...
Solanum lycopersicumFooDB
    • Shmuel Yannai Dictionary of Food Compounds with CD-ROM: Additives, Flavors, and Ingredients. Chap...
Tanacetum partheniumLOTUS Database
Vitis viniferaLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as benzoyl derivatives. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-).
KingdomOrganic compounds
Super ClassBenzenoids
ClassBenzene and substituted derivatives
Sub ClassBenzoyl derivatives
Direct ParentBenzoyl derivatives
Alternative Parents
Substituents
  • Benzoyl
  • Benzaldehyde
  • Aryl-aldehyde
  • Toluene
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Aldehyde
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External Descriptors
Physical Properties
StateLiquid
Experimental Properties
PropertyValueReference
Melting Point-6 °CNot Available
Boiling Point204.00 °C. @ 760.00 mm HgThe Good Scents Company Information System
Water Solubility2.27 mg/mL at 25 °CNot Available
LogP2.100 (est)The Good Scents Company Information System
Predicted Properties
PropertyValueSource
Water Solubility1.47 g/LALOGPS
logP2.01ALOGPS
logP2.2ChemAxon
logS-1.9ALOGPS
pKa (Strongest Basic)-7.1ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count1ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area17.07 ŲChemAxon
Rotatable Bond Count1ChemAxon
Refractivity37.68 m³·mol⁻¹ChemAxon
Polarizability13.17 ųChemAxon
Number of Rings1ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleNoChemAxon
HMDB IDHMDB0029638
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB000808
KNApSAcK IDC00047546
Chemspider ID13865424
KEGG Compound IDC06758
BioCyc IDCPD-8773
BiGG IDNot Available
Wikipedia Link4-Methylbenzaldehyde
METLIN IDNot Available
PubChem Compound7725
PDB IDNot Available
ChEBI ID28617
Good Scents IDrw1003422
References
General References
  1. Huang J, Feng Y, Fu J, Sheng G: A method of detecting carbonyl compounds in tree leaves in China. Environ Sci Pollut Res Int. 2010 Jun;17(5):1129-36. doi: 10.1007/s11356-009-0277-3. Epub 2009 Dec 17. [PubMed:20016999 ]
  2. Cutillo F, DellaGreca M, Gionti M, Previtera L, Zarrelli A: Phenols and lignans from Chenopodium album. Phytochem Anal. 2006 Sep-Oct;17(5):344-9. doi: 10.1002/pca.924. [PubMed:17019936 ]
  3. Blachut D, Wojtasiewicz K, Krawczyk K, Maurin J, Szawkalo J, Czarnocki Z: Identification and synthesis of by-products found in 4-methylthioamphetamine (4-MTA) produced by the Leuckart method. Forensic Sci Int. 2012 Mar 10;216(1-3):108-20. doi: 10.1016/j.forsciint.2011.09.005. Epub 2011 Oct 6. [PubMed:21982394 ]
  4. Wooding M, Rohwer ER, Naude Y: Chemical profiling of the human skin surface for malaria vector control via a non-invasive sorptive sampler with GCxGC-TOFMS. Anal Bioanal Chem. 2020 Sep;412(23):5759-5777. doi: 10.1007/s00216-020-02799-y. Epub 2020 Jul 18. [PubMed:32681223 ]
  5. Amaro F, Pinto J, Rocha S, Araujo AM, Miranda-Goncalves V, Jeronimo C, Henrique R, de Lourdes Bastos M, Carvalho M, de Pinho PG: Volatilomics Reveals Potential Biomarkers for Identification of Renal Cell Carcinoma: An In Vitro Approach. Metabolites. 2020 Apr 27;10(5). pii: metabo10050174. doi: 10.3390/metabo10050174. [PubMed:32349455 ]
  6. Yousefian M, Rafiee Z: Cu-metal-organic framework supported on chitosan for efficient condensation of aromatic aldehydes and malononitrile. Carbohydr Polym. 2020 Jan 15;228:115393. doi: 10.1016/j.carbpol.2019.115393. Epub 2019 Sep 30. [PubMed:31635737 ]
  7. Lima AR, Araujo AM, Pinto J, Jeronimo C, Henrique R, Bastos ML, Carvalho M, Guedes de Pinho P: Discrimination between the human prostate normal and cancer cell exometabolome by GC-MS. Sci Rep. 2018 Apr 3;8(1):5539. doi: 10.1038/s41598-018-23847-9. [PubMed:29615722 ]
  8. Park JH, Lee NH, Yang YC, Lee HS: Food Protective Effects of 3-Methylbenzaldehyde Derived from Myosotis arvensis and Its Analogues against Tyrophagus putrescentiae. Sci Rep. 2017 Jul 26;7(1):6608. doi: 10.1038/s41598-017-07001-5. [PubMed:28747743 ]
  9. Sangthong S, Suksabye P, Thiravetyan P: Air-borne xylene degradation by Bougainvillea buttiana and the role of epiphytic bacteria in the degradation. Ecotoxicol Environ Saf. 2016 Apr;126:273-280. doi: 10.1016/j.ecoenv.2015.12.017. Epub 2016 Jan 13. [PubMed:26773837 ]
  10. (). Yannai, Shmuel. (2004) Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC.. .