Np mrd loader

Record Information
Version1.0
Created at2007-05-22 17:57:51 UTC
Updated at2021-06-30 02:06:15 UTC
NP-MRD IDNP0001435
Secondary Accession NumbersNone
Natural Product Identification
Common Name13-cis-Retinal
Description13-Cis-Retinal is a naturally occurring retinoid. Retinoids are vitamin A analogs that have profound biological activities. Several retinoids have been reported to have antiinflammatory activity in certain animal models of arthritis, such as adjuvant-induced and streptococcal cell wall-induced arthritis in rats. Some retinoids also have been shown to possess antiinftammatory activity in man by their ability to modulate inflammatory diseases of the skin. It has been reported, for example, that retinoid treatment can inhibit neutrophil accumulation in cutaneous disorders such as psoriasis. (PMID:2123476 ).
Structure
Thumb
Synonyms
ValueSource
(13cis)-RetinalChEBI
(2Z,4E,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraenalChEBI
13-cis-RetinaldehydeChEBI
RETINALChEBI
13Z-RetinalHMDB
cis-13-RetinalHMDB
Neoretinene aHMDB
Neovitamin a aldehydeHMDB
13-cis-RetinalMeSH, HMDB
Chemical FormulaC20H28O
Average Mass284.4357 Da
Monoisotopic Mass284.21402 Da
IUPAC Name(2Z,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraenal
Traditional Name13-cis retinal
CAS Registry Number472-86-6
SMILES
C\C(\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C)=C\C=O
InChI Identifier
InChI=1S/C20H28O/c1-16(8-6-9-17(2)13-15-21)11-12-19-18(3)10-7-14-20(19,4)5/h6,8-9,11-13,15H,7,10,14H2,1-5H3/b9-6+,12-11+,16-8+,17-13-
InChI KeyNCYCYZXNIZJOKI-HWCYFHEPSA-N
Experimental Spectra
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
2D NMR[1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, CDCl3, experimental)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 25 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Anas platyrhynchosFooDB
AnatidaeFooDB
Anser anserFooDB
Bison bisonFooDB
Bos taurusFooDB
Bos taurus X Bison bisonFooDB
Bubalus bubalisFooDB
Capra aegagrus hircusFooDB
CervidaeFooDB
Cervus canadensisFooDB
ColumbaFooDB
ColumbidaeFooDB
Dromaius novaehollandiaeFooDB
Equus caballusFooDB
Gallus gallusFooDB
Homo sapiensLOTUS Database
Lagopus mutaFooDB
LeporidaeFooDB
Lepus timidusFooDB
Melanitta fuscaFooDB
Meleagris gallopavoFooDB
Numida meleagrisFooDB
OdocoileusFooDB
OryctolagusFooDB
Ovis ariesFooDB
PhasianidaeFooDB
Phasianus colchicusFooDB
Struthio camelusFooDB
Sus scrofaFooDB
Sus scrofa domesticaFooDB
Chemical Taxonomy
Description Belongs to the class of organic compounds known as retinoids. These are oxygenated derivatives of 3,7-dimethyl-1-(2,6,6-trimethylcyclohex-1-enyl)nona-1,3,5,7-tetraene and derivatives thereof.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassPrenol lipids
Sub ClassRetinoids
Direct ParentRetinoids
Alternative Parents
Substituents
  • Retinoid skeleton
  • Diterpenoid
  • Enal
  • Alpha,beta-unsaturated aldehyde
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aldehyde
  • Aliphatic homomonocyclic compound
Molecular FrameworkAliphatic homomonocyclic compounds
External Descriptors
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.0042 g/LALOGPS
logP4.86ChemAxon
pKa (Strongest Basic)-4.1ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count1ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area17.07 ŲChemAxon
Rotatable Bond Count5ChemAxon
Refractivity96.87 m³·mol⁻¹ChemAxon
Polarizability35.47 ųChemAxon
Number of Rings1ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleNoChemAxon
HMDB IDHMDB0006220
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB023844
KNApSAcK IDNot Available
Chemspider ID4940755
KEGG Compound IDNot Available
BioCyc IDCPD-13525
BiGG ID2455100
Wikipedia LinkRetinal
METLIN IDNot Available
PubChem Compound6436079
PDB IDNot Available
ChEBI ID45487
Good Scents IDNot Available
References
General References
  1. Hope WC, Patel BJ, Fiedler-Nagy C, Wittreich BH: Retinoids inhibit phospholipase A2 in human synovial fluid and arachidonic acid release from rat peritoneal macrophages. Inflammation. 1990 Oct;14(5):543-59. [PubMed:2123476 ]
  2. Jakdetchai O, Eberhardt P, Asido M, Kaur J, Kriebel CN, Mao J, Leeder AJ, Brown LJ, Brown RCD, Becker-Baldus J, Bamann C, Wachtveitl J, Glaubitz C: Probing the photointermediates of light-driven sodium ion pump KR2 by DNP-enhanced solid-state NMR. Sci Adv. 2021 Mar 12;7(11). pii: 7/11/eabf4213. doi: 10.1126/sciadv.abf4213. Print 2021 Mar. [PubMed:33712469 ]
  3. VanGordon MR, Prignano LA, Dempski RE, Rick SW, Rempe SB: Channelrhodopsin C1C2: Photocycle kinetics and interactions near the central gate. Biophys J. 2021 May 4;120(9):1835-1845. doi: 10.1016/j.bpj.2021.03.002. Epub 2021 Mar 9. [PubMed:33705762 ]
  4. Nakamizo Y, Fujisawa T, Kikukawa T, Okamura A, Baba H, Unno M: Low-temperature Raman spectroscopy of sodium-pump rhodopsin from Indibacter alkaliphilus: insight of Na(+) binding for active Na(+) transport. Phys Chem Chem Phys. 2021 Jan 28;23(3):2072-2079. doi: 10.1039/d0cp05652a. [PubMed:33433533 ]
  5. Kandori H: Biophysics of rhodopsins and optogenetics. Biophys Rev. 2020 Apr;12(2):355-361. doi: 10.1007/s12551-020-00645-0. Epub 2020 Feb 17. [PubMed:32065378 ]
  6. Han S, Kim SH, Cho JC, Song J, Bleckner G, Jung KH: Photochemical characterization of flavobacterial rhodopsin: The importance of the helix E region for heat stability. Biochim Biophys Acta Bioenerg. 2020 Jan 1;1861(1):148092. doi: 10.1016/j.bbabio.2019.148092. Epub 2019 Nov 6. [PubMed:31669491 ]
  7. Yang T, Zhang W, Cheng J, Nie Y, Xin Q, Yuan S, Dou Y: Formation Mechanism of Ion Channel in Channelrhodopsin-2: Molecular Dynamics Simulation and Steering Molecular Dynamics Simulations. Int J Mol Sci. 2019 Aug 2;20(15). pii: ijms20153780. doi: 10.3390/ijms20153780. [PubMed:31382458 ]
  8. Miyahara T, Nakatsuji H: Light-Driven Proton, Sodium Ion, and Chloride Ion Transfer Mechanisms in Rhodopsins: SAC-CI Study. J Phys Chem A. 2019 Mar 7;123(9):1766-1784. doi: 10.1021/acs.jpca.8b10203. Epub 2019 Feb 27. [PubMed:30762358 ]
  9. Ghanbarpour A, Nairat M, Nosrati M, Santos EM, Vasileiou C, Dantus M, Borhan B, Geiger JH: Mimicking Microbial Rhodopsin Isomerization in a Single Crystal. J Am Chem Soc. 2019 Jan 30;141(4):1735-1741. doi: 10.1021/jacs.8b12493. Epub 2019 Jan 14. [PubMed:30580520 ]
  10. Roy PP, Kato Y, Abe-Yoshizumi R, Pieri E, Ferre N, Kandori H, Buckup T: Mapping the ultrafast vibrational dynamics of all-trans and 13-cis retinal isomerization in Anabaena Sensory Rhodopsin. Phys Chem Chem Phys. 2018 Dec 12;20(48):30159-30173. doi: 10.1039/c8cp05469j. [PubMed:30484447 ]
  11. Inoue S, Yoshizawa S, Nakajima Y, Kojima K, Tsukamoto T, Kikukawa T, Sudo Y: Spectroscopic characteristics of Rubricoccus marinus xenorhodopsin (RmXeR) and a putative model for its inward H(+) transport mechanism. Phys Chem Chem Phys. 2018 Jan 31;20(5):3172-3183. doi: 10.1039/c7cp05033j. [PubMed:29034950 ]
  12. Kajimoto K, Kikukawa T, Nakashima H, Yamaryo H, Saito Y, Fujisawa T, Demura M, Unno M: Transient Resonance Raman Spectroscopy of a Light-Driven Sodium-Ion-Pump Rhodopsin from Indibacter alkaliphilus. J Phys Chem B. 2017 May 4;121(17):4431-4437. doi: 10.1021/acs.jpcb.7b02421. Epub 2017 Apr 21. [PubMed:28421760 ]
  13. Schnedermann C, Muders V, Ehrenberg D, Schlesinger R, Kukura P, Heberle J: Vibronic Dynamics of the Ultrafast all-trans to 13-cis Photoisomerization of Retinal in Channelrhodopsin-1. J Am Chem Soc. 2016 Apr 13;138(14):4757-62. doi: 10.1021/jacs.5b12251. Epub 2016 Mar 30. [PubMed:26999496 ]