Record Information |
---|
Version | 2.0 |
---|
Created at | 2007-05-22 17:57:51 UTC |
---|
Updated at | 2024-09-17 15:45:08 UTC |
---|
NP-MRD ID | NP0001435 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | 13-cis-Retinal |
---|
Description | 13-Cis-Retinal is a naturally occurring retinoid. Retinoids are vitamin A analogs that have profound biological activities. Several retinoids have been reported to have antiinflammatory activity in certain animal models of arthritis, such as adjuvant-induced and streptococcal cell wall-induced arthritis in rats. Some retinoids also have been shown to possess antiinftammatory activity in man by their ability to modulate inflammatory diseases of the skin. It has been reported, for example, that retinoid treatment can inhibit neutrophil accumulation in cutaneous disorders such as psoriasis. (PMID:2123476 ). |
---|
Structure | C\C(\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C)=C\C=O InChI=1S/C20H28O/c1-16(8-6-9-17(2)13-15-21)11-12-19-18(3)10-7-14-20(19,4)5/h6,8-9,11-13,15H,7,10,14H2,1-5H3/b9-6+,12-11+,16-8+,17-13- |
---|
Synonyms | Value | Source |
---|
(13cis)-Retinal | ChEBI | (2Z,4E,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraenal | ChEBI | 13-cis-Retinaldehyde | ChEBI | RETINAL | ChEBI | 13Z-Retinal | HMDB | cis-13-Retinal | HMDB | Neoretinene a | HMDB | Neovitamin a aldehyde | HMDB | 13-cis-Retinal | MeSH, HMDB |
|
---|
Chemical Formula | C20H28O |
---|
Average Mass | 284.4357 Da |
---|
Monoisotopic Mass | 284.21402 Da |
---|
IUPAC Name | (2Z,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraenal |
---|
Traditional Name | 13-cis retinal |
---|
CAS Registry Number | 472-86-6 |
---|
SMILES | C\C(\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C)=C\C=O |
---|
InChI Identifier | InChI=1S/C20H28O/c1-16(8-6-9-17(2)13-15-21)11-12-19-18(3)10-7-14-20(19,4)5/h6,8-9,11-13,15H,7,10,14H2,1-5H3/b9-6+,12-11+,16-8+,17-13- |
---|
InChI Key | NCYCYZXNIZJOKI-HWCYFHEPSA-N |
---|
Experimental Spectra |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, CDCl3, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as retinoids. These are oxygenated derivatives of 3,7-dimethyl-1-(2,6,6-trimethylcyclohex-1-enyl)nona-1,3,5,7-tetraene and derivatives thereof. |
---|
Kingdom | Organic compounds |
---|
Super Class | Lipids and lipid-like molecules |
---|
Class | Prenol lipids |
---|
Sub Class | Retinoids |
---|
Direct Parent | Retinoids |
---|
Alternative Parents | |
---|
Substituents | - Retinoid skeleton
- Diterpenoid
- Enal
- Alpha,beta-unsaturated aldehyde
- Organic oxygen compound
- Organic oxide
- Hydrocarbon derivative
- Organooxygen compound
- Carbonyl group
- Aldehyde
- Aliphatic homomonocyclic compound
|
---|
Molecular Framework | Aliphatic homomonocyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Hope WC, Patel BJ, Fiedler-Nagy C, Wittreich BH: Retinoids inhibit phospholipase A2 in human synovial fluid and arachidonic acid release from rat peritoneal macrophages. Inflammation. 1990 Oct;14(5):543-59. [PubMed:2123476 ]
- Jakdetchai O, Eberhardt P, Asido M, Kaur J, Kriebel CN, Mao J, Leeder AJ, Brown LJ, Brown RCD, Becker-Baldus J, Bamann C, Wachtveitl J, Glaubitz C: Probing the photointermediates of light-driven sodium ion pump KR2 by DNP-enhanced solid-state NMR. Sci Adv. 2021 Mar 12;7(11). pii: 7/11/eabf4213. doi: 10.1126/sciadv.abf4213. Print 2021 Mar. [PubMed:33712469 ]
- VanGordon MR, Prignano LA, Dempski RE, Rick SW, Rempe SB: Channelrhodopsin C1C2: Photocycle kinetics and interactions near the central gate. Biophys J. 2021 May 4;120(9):1835-1845. doi: 10.1016/j.bpj.2021.03.002. Epub 2021 Mar 9. [PubMed:33705762 ]
- Nakamizo Y, Fujisawa T, Kikukawa T, Okamura A, Baba H, Unno M: Low-temperature Raman spectroscopy of sodium-pump rhodopsin from Indibacter alkaliphilus: insight of Na(+) binding for active Na(+) transport. Phys Chem Chem Phys. 2021 Jan 28;23(3):2072-2079. doi: 10.1039/d0cp05652a. [PubMed:33433533 ]
- Kandori H: Biophysics of rhodopsins and optogenetics. Biophys Rev. 2020 Apr;12(2):355-361. doi: 10.1007/s12551-020-00645-0. Epub 2020 Feb 17. [PubMed:32065378 ]
- Han S, Kim SH, Cho JC, Song J, Bleckner G, Jung KH: Photochemical characterization of flavobacterial rhodopsin: The importance of the helix E region for heat stability. Biochim Biophys Acta Bioenerg. 2020 Jan 1;1861(1):148092. doi: 10.1016/j.bbabio.2019.148092. Epub 2019 Nov 6. [PubMed:31669491 ]
- Yang T, Zhang W, Cheng J, Nie Y, Xin Q, Yuan S, Dou Y: Formation Mechanism of Ion Channel in Channelrhodopsin-2: Molecular Dynamics Simulation and Steering Molecular Dynamics Simulations. Int J Mol Sci. 2019 Aug 2;20(15). pii: ijms20153780. doi: 10.3390/ijms20153780. [PubMed:31382458 ]
- Miyahara T, Nakatsuji H: Light-Driven Proton, Sodium Ion, and Chloride Ion Transfer Mechanisms in Rhodopsins: SAC-CI Study. J Phys Chem A. 2019 Mar 7;123(9):1766-1784. doi: 10.1021/acs.jpca.8b10203. Epub 2019 Feb 27. [PubMed:30762358 ]
- Ghanbarpour A, Nairat M, Nosrati M, Santos EM, Vasileiou C, Dantus M, Borhan B, Geiger JH: Mimicking Microbial Rhodopsin Isomerization in a Single Crystal. J Am Chem Soc. 2019 Jan 30;141(4):1735-1741. doi: 10.1021/jacs.8b12493. Epub 2019 Jan 14. [PubMed:30580520 ]
- Roy PP, Kato Y, Abe-Yoshizumi R, Pieri E, Ferre N, Kandori H, Buckup T: Mapping the ultrafast vibrational dynamics of all-trans and 13-cis retinal isomerization in Anabaena Sensory Rhodopsin. Phys Chem Chem Phys. 2018 Dec 12;20(48):30159-30173. doi: 10.1039/c8cp05469j. [PubMed:30484447 ]
- Inoue S, Yoshizawa S, Nakajima Y, Kojima K, Tsukamoto T, Kikukawa T, Sudo Y: Spectroscopic characteristics of Rubricoccus marinus xenorhodopsin (RmXeR) and a putative model for its inward H(+) transport mechanism. Phys Chem Chem Phys. 2018 Jan 31;20(5):3172-3183. doi: 10.1039/c7cp05033j. [PubMed:29034950 ]
- Kajimoto K, Kikukawa T, Nakashima H, Yamaryo H, Saito Y, Fujisawa T, Demura M, Unno M: Transient Resonance Raman Spectroscopy of a Light-Driven Sodium-Ion-Pump Rhodopsin from Indibacter alkaliphilus. J Phys Chem B. 2017 May 4;121(17):4431-4437. doi: 10.1021/acs.jpcb.7b02421. Epub 2017 Apr 21. [PubMed:28421760 ]
- Schnedermann C, Muders V, Ehrenberg D, Schlesinger R, Kukura P, Heberle J: Vibronic Dynamics of the Ultrafast all-trans to 13-cis Photoisomerization of Retinal in Channelrhodopsin-1. J Am Chem Soc. 2016 Apr 13;138(14):4757-62. doi: 10.1021/jacs.5b12251. Epub 2016 Mar 30. [PubMed:26999496 ]
|
---|