Record Information |
---|
Version | 2.0 |
---|
Created at | 2006-08-12 19:17:39 UTC |
---|
Updated at | 2021-10-07 20:40:59 UTC |
---|
NP-MRD ID | NP0001412 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | 5-Aminopentanoic acid |
---|
Description | 5-Aminopentanoic acid (or 5-aminovalerate) is a lysine degradation product. It can be produced both endogenously or through bacterial catabolism of lysine. 5-Aminovalerate is formed via the following multi-step reaction: L-lysine leads to cadverine leads to L-piperideine leads 5-aminovalerate (PMID: 405455 ). In other words it is a metabolite of cadaverine which is formed via the intermediate, 1-piperideine (PMID: 6436440 ). Cadaverine is a foul-smelling diamine compound produced by protein hydrolysis during putrefaction of animal tissue. High levels of 5-aminovalerate in biofluids may indicate bacterial overgrowth or endogenous tissue necrosis. In most cases endogenous 5-aminovalerate is thought to be primarily a microbial metabolite produced by the gut or oral microflora, although it can be produced endogenously. 5-Aminovalerate is a normal metabolite present in human saliva, with a tendency to elevated concentration in patients with chronic periodontitis. Bacterial contamination and decomposition of salivary proteins is primarily responsible for elevated salivary levels (PMID 3481959 ). Beyond being a general waste product, 5-aminovalerate is also believed to act as a methylene homologue of gamma-aminobutyric acid (GABA) and functions as a weak GABA agonist (PMID: 4031870 ). It is also known as an antifibrinolytic amino acid analog and so it functions as a weak inhibitor of the blood clotting pathway (PMID: 6703712 ). 5- Aminovalerate is an in vivo substrate of 4-aminobutyrate:2-Oxoglutarate aminotransferase (PMID: 4031870 ). It can be found in Corynebacterium (PMID: 27717386 ). |
---|
Structure | InChI=1S/C5H11NO2/c6-4-2-1-3-5(7)8/h1-4,6H2,(H,7,8) |
---|
Synonyms | Value | Source |
---|
5-Amino-N-valeric acid | ChEBI | 5-Aminopentanoate | ChEBI | 5-Aminovaleric acid | ChEBI | DANVA | ChEBI | delta-Amino-N-valeric acid | ChEBI | delta-Aminovaleric acid | ChEBI | 5-Amino-N-valerate | Generator | 5-Aminovalerate | Generator | delta-Amino-N-valerate | Generator | Δ-amino-N-valerate | Generator | Δ-amino-N-valeric acid | Generator | delta-Aminovalerate | Generator | Δ-aminovalerate | Generator | Δ-aminovaleric acid | Generator | 5-Aminovaleric acid hydrochloride | HMDB | 5-Amino-pentanoate | HMDB | 5-Aminopentanoic acid | KEGG |
|
---|
Chemical Formula | C5H11NO2 |
---|
Average Mass | 117.1463 Da |
---|
Monoisotopic Mass | 117.07898 Da |
---|
IUPAC Name | 5-aminopentanoic acid |
---|
Traditional Name | 5-aminovaleric acid |
---|
CAS Registry Number | 660-88-8 |
---|
SMILES | NCCCCC(O)=O |
---|
InChI Identifier | InChI=1S/C5H11NO2/c6-4-2-1-3-5(7)8/h1-4,6H2,(H,7,8) |
---|
InChI Key | JJMDCOVWQOJGCB-UHFFFAOYSA-N |
---|
Experimental Spectra |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Predicted Spectra |
---|
|
| Not Available | Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Species Where Detected | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as delta amino acids and derivatives. Delta amino acids and derivatives are compounds containing a carboxylic acid group and an amino group at the C5 carbon atom. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organic acids and derivatives |
---|
Class | Carboxylic acids and derivatives |
---|
Sub Class | Amino acids, peptides, and analogues |
---|
Direct Parent | Delta amino acids and derivatives |
---|
Alternative Parents | |
---|
Substituents | - Delta amino acid or derivatives
- Straight chain fatty acid
- Fatty acid
- Fatty acyl
- Amino acid
- Carboxylic acid
- Monocarboxylic acid or derivatives
- Amine
- Hydrocarbon derivative
- Organic oxide
- Primary amine
- Organooxygen compound
- Organonitrogen compound
- Organopnictogen compound
- Primary aliphatic amine
- Organic oxygen compound
- Organic nitrogen compound
- Carbonyl group
- Aliphatic acyclic compound
|
---|
Molecular Framework | Aliphatic acyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | 157.5 °C | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | 1000 mg/mL at 20 °C | Not Available | LogP | -2.63 | Hansch CH, Leo A and Hoekman DH. "Exploring QSAR: Hydrophobic, Electronic, and Steric Constraints. Volume 1" ACS Publications (1995). |
|
---|
Predicted Properties | |
---|
General References | - Santos A, Zanetta S, Cresteil T, Deroussent A, Pein F, Raymond E, Vernillet L, Risse ML, Boige V, Gouyette A, Vassal G: Metabolism of irinotecan (CPT-11) by CYP3A4 and CYP3A5 in humans. Clin Cancer Res. 2000 May;6(5):2012-20. [PubMed:10815927 ]
- Sparreboom A, de Jonge MJ, de Bruijn P, Brouwer E, Nooter K, Loos WJ, van Alphen RJ, Mathijssen RH, Stoter G, Verweij J: Irinotecan (CPT-11) metabolism and disposition in cancer patients. Clin Cancer Res. 1998 Nov;4(11):2747-54. [PubMed:9829738 ]
- Fujita K, Ando Y, Narabayashi M, Miya T, Nagashima F, Yamamoto W, Kodama K, Araki K, Endo H, Sasaki Y: Gefitinib (Iressa) inhibits the CYP3A4-mediated formation of 7-ethyl-10-(4-amino-1-piperidino)carbonyloxycamptothecin but activates that of 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino]carbonyloxycamptothecin from irinotecan. Drug Metab Dispos. 2005 Dec;33(12):1785-90. Epub 2005 Aug 25. [PubMed:16123050 ]
- Poujol S, Pinguet F, Malosse F, Astre C, Ychou M, Culine S, Bressolle F: Sensitive HPLC-fluorescence method for irinotecan and four major metabolites in human plasma and saliva: application to pharmacokinetic studies. Clin Chem. 2003 Nov;49(11):1900-8. [PubMed:14578322 ]
- van den Berg GA, Nagel GT, Muskiet FA, Halie MR: Mass fragmentographic identification of polyamine metabolites in the urine of normal persons and cancer patients, and its relevance to the use of polyamines as tumour markers. J Chromatogr. 1985 May 3;339(2):223-31. [PubMed:4008565 ]
- Syrjanen S, Piironen P, Markkanen H: Free amino-acid content of wax-stimulated human whole saliva as related to periodontal disease. Arch Oral Biol. 1987;32(9):607-10. [PubMed:3481959 ]
- Fothergill JC, Guest JR: Catabolism of L-lysine by Pseudomonas aeruginosa. J Gen Microbiol. 1977 Mar;99(1):139-55. [PubMed:405455 ]
- Callery PS, Geelhaar LA: Biosynthesis of 5-aminopentanoic acid and 2-piperidone from cadaverine and 1-piperideine in mouse. J Neurochem. 1984 Dec;43(6):1631-4. [PubMed:6436440 ]
- Callery PS, Geelhaar LA: 1-Piperideine as an in vivo precursor of the gamma-aminobutyric acid homologue 5-aminopentanoic acid. J Neurochem. 1985 Sep;45(3):946-8. [PubMed:4031870 ]
- Cole KR, Castellino FJ: The binding of antifibrinolytic amino acids to kringle-4-containing fragments of plasminogen. Arch Biochem Biophys. 1984 Mar;229(2):568-75. [PubMed:6703712 ]
- Shin JH, Park SH, Oh YH, Choi JW, Lee MH, Cho JS, Jeong KJ, Joo JC, Yu J, Park SJ, Lee SY: Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid. Microb Cell Fact. 2016 Oct 7;15(1):174. doi: 10.1186/s12934-016-0566-8. [PubMed:27717386 ]
|
---|