Record Information |
---|
Version | 2.0 |
---|
Created at | 2005-11-16 15:48:42 UTC |
---|
Updated at | 2021-08-19 23:58:56 UTC |
---|
NP-MRD ID | NP0001228 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | Guanosine monophosphate |
---|
Description | Guanosine monophosphate (GMP), also known as 5′-guanidylic acid or guanylic acid (conjugate base guanylate), is a nucleotide that is used as a monomer in RNA. It is an ester of phosphoric acid with the nucleoside guanosine. GMP consists of the phosphate group, the pentose sugar ribose, and the nucleobase guanine; hence it is a ribonucleoside monophosphate. Guanosine monophosphate is commercially produced by microbial fermentation. Guanosine monophosphate, also known as guanylic acid or 5'-GMP, belongs to the class of organic compounds known as purine ribonucleoside monophosphates. These are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. A guanine nucleotide containing one phosphate group esterified to the sugar moiety and found widely in nature. Guanosine monophosphate exists in all living species, ranging from bacteria to humans. Within humans, guanosine monophosphate participates in a number of enzymatic reactions. In particular, guanosine triphosphate and guanosine monophosphate can be biosynthesized from diguanosine tetraphosphate through its interaction with the enzyme bis(5'-nucleosyl)-tetraphosphatase [asymmetrical]. In addition, guanosine monophosphate can be biosynthesized from guanosine diphosphate; which is mediated by the enzyme ectonucleoside triphosphate diphosphohydrolase 5. In humans, guanosine monophosphate is involved in the metabolic disorder called the lesch-nyhan syndrome (lns) pathway. Outside of the human body, guanosine monophosphate has been detected, but not quantified in several different foods, such as common cabbages, tea, winter squash, spearmints, and sugar apples. |
---|
Structure | NC1=NC2=C(N=CN2[C@@H]2O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]2O)C(=O)N1 InChI=1S/C10H14N5O8P/c11-10-13-7-4(8(18)14-10)12-2-15(7)9-6(17)5(16)3(23-9)1-22-24(19,20)21/h2-3,5-6,9,16-17H,1H2,(H2,19,20,21)(H3,11,13,14,18)/t3-,5-,6-,9-/m1/s1 |
---|
Synonyms | Value | Source |
---|
5'-GMP | ChEBI | GMP | ChEBI | Guanosine 5'-phosphate | ChEBI | Guanosine-5'-monophosphate | ChEBI | Guanylic acid | ChEBI | pG | ChEBI | Guanosine 5'-monophosphate | Kegg | Guanosine 5'-phosphoric acid | Generator | Guanosine-5'-monophosphoric acid | Generator | Guanylate | Generator | Guanosine 5'-monophosphoric acid | Generator | Guanosine monophosphoric acid | Generator | e 626 | HMDB | Guanidine monophosphate | HMDB | Guanosine 5'-phosphorate | HMDB | Guanosine-5'-phosphate | HMDB | Guanosine-phosphate | HMDB | 5' Guanylic acid | HMDB | Acid, 5'-guanylic | HMDB | Acid, guanylic | HMDB | Guanosine 5' monophosphate | HMDB | 5'-monoPhosphate, guanosine | HMDB | monoPhosphate, guanosine | HMDB | 5'-Guanylic acid | HMDB |
|
---|
Chemical Formula | C10H14N5O8P |
---|
Average Mass | 363.2206 Da |
---|
Monoisotopic Mass | 363.05800 Da |
---|
IUPAC Name | {[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid |
---|
Traditional Name | guanylate |
---|
CAS Registry Number | 85-32-5 |
---|
SMILES | NC1=NC2=C(N=CN2[C@@H]2O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]2O)C(=O)N1 |
---|
InChI Identifier | InChI=1S/C10H14N5O8P/c11-10-13-7-4(8(18)14-10)12-2-15(7)9-6(17)5(16)3(23-9)1-22-24(19,20)21/h2-3,5-6,9,16-17H,1H2,(H2,19,20,21)(H3,11,13,14,18)/t3-,5-,6-,9-/m1/s1 |
---|
InChI Key | RQFCJASXJCIDSX-UUOKFMHZSA-N |
---|
Experimental Spectra |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Predicted Spectra |
---|
|
| Not Available | Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Species Where Detected | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as purine ribonucleoside monophosphates. These are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. |
---|
Kingdom | Organic compounds |
---|
Super Class | Nucleosides, nucleotides, and analogues |
---|
Class | Purine nucleotides |
---|
Sub Class | Purine ribonucleotides |
---|
Direct Parent | Purine ribonucleoside monophosphates |
---|
Alternative Parents | |
---|
Substituents | - Purine ribonucleoside monophosphate
- Pentose phosphate
- Pentose-5-phosphate
- Glycosyl compound
- N-glycosyl compound
- 6-oxopurine
- Hypoxanthine
- Monosaccharide phosphate
- Pentose monosaccharide
- Imidazopyrimidine
- Purine
- Aminopyrimidine
- Monoalkyl phosphate
- Pyrimidone
- Alkyl phosphate
- Pyrimidine
- Monosaccharide
- N-substituted imidazole
- Organic phosphoric acid derivative
- Phosphoric acid ester
- Tetrahydrofuran
- Azole
- Imidazole
- Heteroaromatic compound
- Vinylogous amide
- 1,2-diol
- Secondary alcohol
- Oxacycle
- Azacycle
- Organoheterocyclic compound
- Primary amine
- Organic nitrogen compound
- Amine
- Hydrocarbon derivative
- Organic oxide
- Organopnictogen compound
- Organic oxygen compound
- Alcohol
- Organonitrogen compound
- Organooxygen compound
- Aromatic heteropolycyclic compound
|
---|
Molecular Framework | Aromatic heteropolycyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Properties | |
---|
Predicted Properties | |
---|
General References | - Scheen AJ: [Medication of the month. Vardenafil (Levitra)]. Rev Med Liege. 2003 Sep;58(9):576-9. [PubMed:14626653 ]
- Begonja AJ, Gambaryan S, Geiger J, Aktas B, Pozgajova M, Nieswandt B, Walter U: Platelet NAD(P)H-oxidase-generated ROS production regulates alphaIIbbeta3-integrin activation independent of the NO/cGMP pathway. Blood. 2005 Oct 15;106(8):2757-60. Epub 2005 Jun 23. [PubMed:15976180 ]
- Zhao L, Gray L, Leonardi-Bee J, Weaver CS, Heptinstall S, Bath PM: Effect of aspirin, clopidogrel and dipyridamole on soluble markers of vascular function in normal volunteers and patients with prior ischaemic stroke. Platelets. 2006 Mar;17(2):100-4. [PubMed:16421011 ]
- Matata BM, Galinanes M: Effect of diabetes on nitric oxide metabolism during cardiac surgery. Diabetes. 2001 Nov;50(11):2603-10. [PubMed:11679441 ]
- Sales ME, Espanol AJ, Sterin-Borda L, Borda E, de Bracco MM: Protein kinase C regulates NO-cGMP pathway in muscarinic receptor activation by HIV+-IgA. Int J Mol Med. 1999 Jun;3(6):633-7. [PubMed:10341295 ]
- Boehning D, Moon C, Sharma S, Hurt KJ, Hester LD, Ronnett GV, Shugar D, Snyder SH: Carbon monoxide neurotransmission activated by CK2 phosphorylation of heme oxygenase-2. Neuron. 2003 Sep 25;40(1):129-37. [PubMed:14527438 ]
- Favory R, Lancel S, Tissier S, Mathieu D, Decoster B, Neviere R: Myocardial dysfunction and potential cardiac hypoxia in rats induced by carbon monoxide inhalation. Am J Respir Crit Care Med. 2006 Aug 1;174(3):320-5. Epub 2006 May 11. [PubMed:16690979 ]
- Yildiz O, Gul H, Ozgok Y, Onguru O, Kilciler M, Aydin A, Isimer A, Harmankaya AC: Increased vasoconstrictor reactivity and decreased endothelial function in high grade varicocele; functional and morphological study. Urol Res. 2003 Oct;31(5):323-8. Epub 2003 Jul 11. [PubMed:14574537 ]
- Seftel AD: Phosphodiesterase type 5 inhibitor differentiation based on selectivity, pharmacokinetic, and efficacy profiles. Clin Cardiol. 2004 Apr;27(4 Suppl 1):I14-19. [PubMed:15115191 ]
- Salomon P, Przewlocka-Kosmala M, Orda A: [Plasma levels of brain natriuretic peptide, cyclic 3'5'-guanosine monophosphate, endothelin 1, and noradrenaline in patients with chronic congestive heart failure]. Pol Arch Med Wewn. 2003 Jan;109(1):43-8. [PubMed:12879765 ]
- Khush KK, De Marco T, Vakharia KT, Harmon C, Fineman JR, Chatterjee K, Michaels AD: Nesiritide acutely increases pulmonary and systemic levels of nitric oxide in patients with pulmonary hypertension. J Card Fail. 2006 Sep;12(7):507-13. [PubMed:16952783 ]
- Yoshimura N, Seki S, Chancellor MB, de Groat WC, Ueda T: Targeting afferent hyperexcitability for therapy of the painful bladder syndrome. Urology. 2002 May;59(5 Suppl 1):61-7. [PubMed:12007524 ]
- Ralph DJ: Normal erectile function. Clin Cornerstone. 2005;7(1):13-8. [PubMed:16156419 ]
- Rosen RC, McKenna KE: PDE-5 inhibition and sexual response: pharmacological mechanisms and clinical outcomes. Annu Rev Sex Res. 2002;13:36-88. [PubMed:12836729 ]
- Zusman RM, Morales A, Glasser DB, Osterloh IH: Overall cardiovascular profile of sildenafil citrate. Am J Cardiol. 1999 Mar 4;83(5A):35C-44C. [PubMed:10078541 ]
- Hamed EA, Meki AR, Gaafar AA, Hamed SA: Role of some vasoactive mediators in patients with erectile dysfunction: their relationship with angiotensin-converting enzyme and growth hormone. Int J Impot Res. 2003 Dec;15(6):418-25. [PubMed:14671660 ]
- Ehsan A, Sommer F, Schmidt A, Klotz T, Koslowski J, Niggemann S, Jacobs G, Engelmann U, Addicks K, Bloch W: Nitric oxide pathways in human bladder carcinoma. The distribution of nitric oxide synthases, soluble guanylyl cyclase, cyclic guanosine monophosphate, and nitrotyrosine. Cancer. 2002 Dec 1;95(11):2293-301. [PubMed:12436434 ]
- Lepore JJ, Maroo A, Bigatello LM, Dec GW, Zapol WM, Bloch KD, Semigran MJ: Hemodynamic effects of sildenafil in patients with congestive heart failure and pulmonary hypertension: combined administration with inhaled nitric oxide. Chest. 2005 May;127(5):1647-53. [PubMed:15888841 ]
- Kekilli M, Beyazit Y, Purnak T, Dogan S, Atalar E: Acute myocardial infarction after sildenafil citrate ingestion. Ann Pharmacother. 2005 Jul-Aug;39(7-8):1362-4. Epub 2005 May 24. [PubMed:15914518 ]
- Ivanovic Z, Duchez P, Dazey B, Hermitte F, Lamrissi-Garcia I, Mazurier F, Praloran V, Reiffers J, Vezon G, Boiron JM: A clinical-scale expansion of mobilized CD 34+ hematopoietic stem and progenitor cells by use of a new serum-free medium. Transfusion. 2006 Jan;46(1):126-31. [PubMed:16398741 ]
|
---|