Np mrd loader

Record Information
Version1.0
Created at2006-08-12 21:33:03 UTC
Updated at2020-11-24 22:21:19 UTC
NP-MRD IDNP0001168
Secondary Accession NumbersNone
Natural Product Identification
Common NameL-Gulonolactone
DescriptionL-Gulonolactone (also known as reduced ascorbic acid, RAA) is the substrate of the enzyme L-gulono-1,4-lactone oxidoreductase (EC 1.1.3.8), Which catalyzes the last step of the biosynthesis of L-ascorbic acid (vitamin C) in plants and animals. The enzyme L-Gulono-1,4-lactone oxidase is missing in scurvy-prone, vitamin C-deficient animals, such as humans. L-Gulonolactone is present in human blood and has been used as one of the markers to compare changes in exercise-induced oxidative stress. (PMID: 16956367 , 16494601 ).
Structure
Thumb
Synonyms
ValueSource
gamma-GulonolactoneChEBI
L-Gulonic acid gamma-lactoneChEBI
L-Gulono-gamma-lactoneChEBI
g-GulonolactoneGenerator
Γ-gulonolactoneGenerator
L-Gulonate g-lactoneGenerator
L-Gulonate gamma-lactoneGenerator
L-Gulonate γ-lactoneGenerator
L-Gulonic acid g-lactoneGenerator
L-Gulonic acid γ-lactoneGenerator
L-Gulono-g-lactoneGenerator
L-Gulono-γ-lactoneGenerator
L-(+)-Gulono-1,4-lactoneHMDB
L-Gulono-1,4-lactoneHMDB
Reduced ascorbateHMDB
Reduced ascorbic acidHMDB
Gulonolactone, (L)-isomerHMDB
GulonolactoneHMDB
Gulonolactone, (D)-isomerHMDB
Dihydroascorbic acidHMDB
L-(+)-Gulonic acid gamma-lactoneHMDB
L-(+)-Gulonic acid γ-lactoneHMDB
L-GulonolactoneHMDB
Chemical FormulaC6H10O6
Average Mass178.1400 Da
Monoisotopic Mass178.04774 Da
IUPAC Name(3S,4R,5R)-5-[(1S)-1,2-dihydroxyethyl]-3,4-dihydroxyoxolan-2-one
Traditional NameL-gulonolactone
CAS Registry Number1128-23-0
SMILES
[H][C@@]1(OC(=O)[C@@H](O)[C@H]1O)[C@@H](O)CO
InChI Identifier
InChI=1S/C6H10O6/c7-1-2(8)5-3(9)4(10)6(11)12-5/h2-5,7-10H,1H2/t2-,3+,4-,5+/m0/s1
InChI KeySXZYCXMUPBBULW-SKNVOMKLSA-N
Experimental Spectra
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Anas platyrhynchosFooDB
AnatidaeFooDB
Anser anserFooDB
Arabidopsis thalianaPlant
Bison bisonFooDB
Bos taurusFooDB
Bos taurus X Bison bisonFooDB
Bubalus bubalisFooDB
Capra aegagrus hircusFooDB
CervidaeFooDB
Cervus canadensisFooDB
ColumbaFooDB
ColumbidaeFooDB
Daucus carotaKNApSAcK Database
Dromaius novaehollandiaeFooDB
Equus caballusFooDB
Gallus gallusFooDB
Glycine maxPlant
Lagopus mutaFooDB
LeporidaeFooDB
Lepus timidusFooDB
Melanitta fuscaFooDB
Meleagris gallopavoFooDB
Numida meleagrisFooDB
OdocoileusFooDB
OryctolagusFooDB
Ovis ariesFooDB
PhasianidaeFooDB
Phasianus colchicusFooDB
Struthio camelusFooDB
Sus scrofaFooDB
Sus scrofa domesticaFooDB
Chemical Taxonomy
Description Belongs to the class of organic compounds known as gamma butyrolactones. Gamma butyrolactones are compounds containing a gamma butyrolactone moiety, which consists of an aliphatic five-member ring with four carbon atoms, one oxygen atom, and bears a ketone group on the carbon adjacent to the oxygen atom.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassLactones
Sub ClassGamma butyrolactones
Direct ParentGamma butyrolactones
Alternative Parents
Substituents
  • Gamma butyrolactone
  • Tetrahydrofuran
  • Secondary alcohol
  • Carboxylic acid ester
  • Oxacycle
  • Monocarboxylic acid or derivatives
  • Carboxylic acid derivative
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Primary alcohol
  • Organooxygen compound
  • Carbonyl group
  • Alcohol
  • Aliphatic heteromonocyclic compound
Molecular FrameworkAliphatic heteromonocyclic compounds
External Descriptors
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogP-2.571Not Available
Predicted Properties
PropertyValueSource
Water Solubility637 g/LALOGPS
logP-2ALOGPS
logP-2.7ChemAxon
logS0.55ALOGPS
pKa (Strongest Acidic)11.62ChemAxon
pKa (Strongest Basic)-3ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count5ChemAxon
Hydrogen Donor Count4ChemAxon
Polar Surface Area107.22 ŲChemAxon
Rotatable Bond Count2ChemAxon
Refractivity34.78 m³·mol⁻¹ChemAxon
Polarizability15.47 ųChemAxon
Number of Rings1ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDHMDB0003466
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB023179
KNApSAcK IDC00053429
Chemspider ID388493
KEGG Compound IDC01040
BioCyc IDL-GULONO-1-4-LACTONE
BiGG ID36677
Wikipedia LinkL-gulonolactone oxidase
METLIN IDNot Available
PubChem Compound439373
PDB IDNot Available
ChEBI ID17587
Good Scents IDNot Available
References
General References
  1. Wolucka BA, Communi D: Mycobacterium tuberculosis possesses a functional enzyme for the synthesis of vitamin C, L-gulono-1,4-lactone dehydrogenase. FEBS J. 2006 Oct;273(19):4435-45. Epub 2006 Sep 5. [PubMed:16956367 ]
  2. Steinberg JG, Delliaux S, Jammes Y: Reliability of different blood indices to explore the oxidative stress in response to maximal cycling and static exercises. Clin Physiol Funct Imaging. 2006 Mar;26(2):106-12. [PubMed:16494601 ]
  3. Zhu Y, Zhao J, Wang C, Zhang F, Huang X, Ren Z, Yang X, Liu Y, Yang X: Exploring the effectiveness of in ovo feeding of vitamin C based on the embryonic vitamin C synthesis and absorption in broiler chickens. J Anim Sci Biotechnol. 2021 Aug 3;12(1):86. doi: 10.1186/s40104-021-00607-w. [PubMed:34340712 ]
  4. Shanaka KASN, Jung S, Janson ND, Jayasingha JRP, Madushani KP, Kim MJ, Lee J: Growth and Antioxidant-Related Effects of the Reestablished Ascorbic Acid Pathway in Zebrafish (Danio rerio) by Genomic Integration of L-Gulonolactone Oxidase From Cloudy Catshark (Scyliorhinus torazame). Front Physiol. 2021 Jul 5;12:685595. doi: 10.3389/fphys.2021.685595. eCollection 2021. [PubMed:34290620 ]
  5. Hou M, Dai TM, Liang XY, Zhang SX, Cui WZ, Qiu JF, Sima YH, Cui WZ, Xu SQ: Bombyx mori can synthesize ascorbic acid through the l-gulose pathway to varying degrees depending on developmental stage. Arch Insect Biochem Physiol. 2021 Apr;106(4):e21783. doi: 10.1002/arch.21783. Epub 2021 Mar 15. [PubMed:33719082 ]
  6. Boel A, Burger J, Vanhomwegen M, Beyens A, Renard M, Barnhoorn S, Casteleyn C, Reinhardt DP, Descamps B, Vanhove C, van der Pluijm I, Coucke P, Willaert A, Essers J, Callewaert B: Slc2a10 knock-out mice deficient in ascorbic acid synthesis recapitulate aspects of arterial tortuosity syndrome and display mitochondrial respiration defects. Hum Mol Genet. 2020 Jun 3;29(9):1476-1488. doi: 10.1093/hmg/ddaa071. [PubMed:32307537 ]
  7. Paciolla C, Fortunato S, Dipierro N, Paradiso A, De Leonardis S, Mastropasqua L, de Pinto MC: Vitamin C in Plants: From Functions to Biofortification. Antioxidants (Basel). 2019 Oct 29;8(11). pii: antiox8110519. doi: 10.3390/antiox8110519. [PubMed:31671820 ]
  8. Hasegawa T, Miyamoto-Takasaki Y, Abe M, Qiu Z, Yamamoto T, Yoshida T, Yoshino H, Hongo H, Yokoyama A, Sasaki M, Kuroshima S, Hara K, Kobayashi M, Akiyama Y, Maeda T, Luiz de Freitas PH, Li M, Amizuka N: Histochemical examination on principal collagen fibers in periodontal ligaments of ascorbic acid-deficient ODS-od/od rats. Microscopy (Oxf). 2019 Oct 9;68(5):349-358. doi: 10.1093/jmicro/dfz021. [PubMed:31271212 ]
  9. Henriques SF, Duque P, Lopez-Fernandez H, Vazquez N, Fdez-Riverola F, Reboiro-Jato M, Vieira CP, Vieira J: Multiple independent L-gulonolactone oxidase (GULO) gene losses and vitamin C synthesis reacquisition events in non-Deuterostomian animal species. BMC Evol Biol. 2019 Jun 18;19(1):126. doi: 10.1186/s12862-019-1454-8. [PubMed:31215418 ]
  10. Fu HY, Liu SL, Chiang YR: Biosynthesis of Ascorbic Acid as a Glucose-Induced Photoprotective Process in the Extremophilic Red Alga Galdieria partita. Front Microbiol. 2020 Jan 14;10:3005. doi: 10.3389/fmicb.2019.03005. eCollection 2019. [PubMed:31993036 ]
  11. Wang X, Wei H, Mao X, Liu J: Proteomics Analysis of Lipid Droplets from the Oleaginous Alga Chromochloris zofingiensis Reveals Novel Proteins for Lipid Metabolism. Genomics Proteomics Bioinformatics. 2019 Jun;17(3):260-272. doi: 10.1016/j.gpb.2019.01.003. Epub 2019 Sep 5. [PubMed:31494267 ]