Record Information |
---|
Version | 2.0 |
---|
Created at | 2005-11-16 15:48:42 UTC |
---|
Updated at | 2022-01-24 00:26:08 UTC |
---|
NP-MRD ID | NP0001163 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | L-Threonine |
---|
Description | Threonine (Thr) or L-threonine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-threonine is one of 20 proteinogenic amino acids, i.E., The amino acids used in the biosynthesis of proteins. Threonine is found in all organisms ranging from bacteria to plants to animals. It is classified as a polar, uncharged (at physiological pH), aliphatic amino acid. Threonine is sometimes considered as a branched chain amino acid. Threonine was actually the last of the 20 amino acids to be discovered (in 1938). It was named threonine because it was similar in structure to threonic acid, a four-carbon monosaccharide. Threonine is an essential amino acid in humans, meaning the body cannot synthesize it and that it must be obtained from the diet. Foods high in threonine include cottage cheese, poultry, fish, meat, lentils, black turtle bean and sesame seeds. Adult humans require about 20 mg/kg body weight/day. In plants and microorganisms, threonine is synthesized from aspartic acid via alpha-aspartyl-semialdehyde and homoserine. In proteins, the threonine residue is susceptible to numerous posttranslational modifications. The hydroxyl side-chain can undergo O-linked glycosylation and phosphorylation through the action of a threonine kinase. Threonine is abundant in human plasma, particularly in newborns. Severe deficiency of threonine causes neurological dysfunction and lameness in experimental animals. Threonine is an immunostimulant which promotes the growth of thymus gland. It also can probably promote cell immune defense function. The threonine content of most of the infant formulas currently on the market is approximately 20% higher than the threonine concentration in human milk. Due to this high threonine content the plasma threonine concentrations are up to twice as high in premature infants fed these formulas than in infants fed human milk. The whey proteins which are used for infant formulas are sweet whey proteins. Sweet whey results from cheese production. Increasing the threonine plasma concentrations leads to accumulation of threonine and glycine in the brain. Such accumulation affects the neurotransmitter balance which may have consequences for the brain development during early postnatal life. Thus, excessive threonine intake during infant feeding should be avoided. (PMID 9853925 ). Threonine is metabolized in at least two ways. In many animals it is converted to pyruvate via threonine dehydrogenase. An intermediate in this pathway can undergo thiolysis with CoA to produce acetyl-CoA and glycine. In humans the gene for threonine dehydrogenase is an inactive pseudogene, so threonine is converted to alpha-ketobutyrate. |
---|
Structure | InChI=1S/C4H9NO3/c1-2(6)3(5)4(7)8/h2-3,6H,5H2,1H3,(H,7,8)/t2-,3+/m1/s1 |
---|
Synonyms | Value | Source |
---|
(2S)-Threonine | ChEBI | (2S,3R)-(-)-Threonine | ChEBI | (2S,3R)-2-Amino-3-hydroxybutanoic acid | ChEBI | 2-Amino-3-hydroxybutyric acid | ChEBI | L-(-)-Threonine | ChEBI | L-2-Amino-3-hydroxybutyric acid | ChEBI | L-alpha-Amino-beta-hydroxybutyric acid | ChEBI | L-Threonin | ChEBI | T | ChEBI | Thr | ChEBI | THREONINE | ChEBI | (2S,3R)-2-Amino-3-hydroxybutanoate | Generator | 2-Amino-3-hydroxybutyrate | Generator | L-2-Amino-3-hydroxybutyrate | Generator | L-a-Amino-b-hydroxybutyrate | Generator | L-a-Amino-b-hydroxybutyric acid | Generator | L-alpha-Amino-beta-hydroxybutyrate | Generator | L-Α-amino-β-hydroxybutyrate | Generator | L-Α-amino-β-hydroxybutyric acid | Generator | (2S,3R)-2-Amino-3-hydroxybutyrate | HMDB | (2S,3R)-2-Amino-3-hydroxybutyric acid | HMDB | (R-(R*,s*))-2-amino-3-hydroxybutanoate | HMDB | (R-(R*,s*))-2-amino-3-hydroxybutanoic acid | HMDB | (S)-Threonine | HMDB | 2-Amino-3-hydroxybutanoate | HMDB | 2-Amino-3-hydroxybutanoic acid | HMDB | Threonin | HMDB | [R-(R*,s*)]-2-amino-3-hydroxy-butanoate | HMDB | [R-(R*,s*)]-2-amino-3-hydroxy-butanoic acid | HMDB | [R-(R*,s*)]-2-amino-3-hydroxybutanoate | HMDB | [R-(R*,s*)]-2-amino-3-hydroxybutanoic acid | HMDB | L Threonine | HMDB |
|
---|
Chemical Formula | C4H9NO3 |
---|
Average Mass | 119.1192 Da |
---|
Monoisotopic Mass | 119.05824 Da |
---|
IUPAC Name | (2S,3R)-2-amino-3-hydroxybutanoic acid |
---|
Traditional Name | L-threonine |
---|
CAS Registry Number | 72-19-5 |
---|
SMILES | C[C@@H](O)[C@H](N)C(O)=O |
---|
InChI Identifier | InChI=1S/C4H9NO3/c1-2(6)3(5)4(7)8/h2-3,6H,5H2,1H3,(H,7,8)/t2-,3+/m1/s1 |
---|
InChI Key | AYFVYJQAPQTCCC-GBXIJSLDSA-N |
---|
Experimental Spectra |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, simulated) | Ahselim | | | 2022-01-24 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 400 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Predicted Spectra |
---|
|
| Not Available | Chemical Shift Submissions |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 400 MHz, H2O, simulated) | v.dorna83@yahoo.com | Not Available | Not Available | 2021-08-03 | View Spectrum |
| Species |
---|
Species of Origin | |
---|
Species Where Detected | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as l-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organic acids and derivatives |
---|
Class | Carboxylic acids and derivatives |
---|
Sub Class | Amino acids, peptides, and analogues |
---|
Direct Parent | L-alpha-amino acids |
---|
Alternative Parents | |
---|
Substituents | - L-alpha-amino acid
- Beta-hydroxy acid
- Short-chain hydroxy acid
- Hydroxy acid
- Fatty acid
- Amino acid
- Secondary alcohol
- Carboxylic acid
- Monocarboxylic acid or derivatives
- Alcohol
- Hydrocarbon derivative
- Primary amine
- Organooxygen compound
- Organonitrogen compound
- Organic oxide
- Primary aliphatic amine
- Organopnictogen compound
- Organic oxygen compound
- Carbonyl group
- Organic nitrogen compound
- Amine
- Aliphatic acyclic compound
|
---|
Molecular Framework | Aliphatic acyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | 256 °C | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | 97 mg/mL | Not Available | LogP | -2.94 | Hansch CH, Leo A and Hoekman DH. "Exploring QSAR: Hydrophobic, Electronic, and Steric Constraints. Volume 1" ACS Publications (1995). |
|
---|
Predicted Properties | |
---|
General References | - Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. doi: 10.1038/nature07762. [PubMed:19212411 ]
- Silwood CJ, Lynch E, Claxson AW, Grootveld MC: 1H and (13)C NMR spectroscopic analysis of human saliva. J Dent Res. 2002 Jun;81(6):422-7. [PubMed:12097436 ]
- Nicholson JK, O'Flynn MP, Sadler PJ, Macleod AF, Juul SM, Sonksen PH: Proton-nuclear-magnetic-resonance studies of serum, plasma and urine from fasting normal and diabetic subjects. Biochem J. 1984 Jan 15;217(2):365-75. [PubMed:6696735 ]
- Wevers RA, Engelke U, Wendel U, de Jong JG, Gabreels FJ, Heerschap A: Standardized method for high-resolution 1H-NMR of cerebrospinal fluid. Clin Chem. 1995 May;41(5):744-51. [PubMed:7729054 ]
- Hagenfeldt L, Bjerkenstedt L, Edman G, Sedvall G, Wiesel FA: Amino acids in plasma and CSF and monoamine metabolites in CSF: interrelationship in healthy subjects. J Neurochem. 1984 Mar;42(3):833-7. [PubMed:6198473 ]
- Peng CT, Wu KH, Lan SJ, Tsai JJ, Tsai FJ, Tsai CH: Amino acid concentrations in cerebrospinal fluid in children with acute lymphoblastic leukemia undergoing chemotherapy. Eur J Cancer. 2005 May;41(8):1158-63. Epub 2005 Apr 14. [PubMed:15911239 ]
- Cynober LA: Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance. Nutrition. 2002 Sep;18(9):761-6. [PubMed:12297216 ]
- Rainesalo S, Keranen T, Palmio J, Peltola J, Oja SS, Saransaari P: Plasma and cerebrospinal fluid amino acids in epileptic patients. Neurochem Res. 2004 Jan;29(1):319-24. [PubMed:14992292 ]
- Vold BS, Keith DE Jr, Slavik M: Urine levels of N-[9-(beta-D-ribofuranosyl)purin-6-ylcarbamoyl]-L-threonine, N6-(delta 2-isopentenyl)adenosine, and 2'-O-methylguanosine as determined by radioimmunoassay for normal subjects and cancer patients. Cancer Res. 1982 Dec;42(12):5265-9. [PubMed:7139629 ]
- Hallgren P, Lundblad A, Svensson S: A new type of carbohydrate-protein linkage in a glycopeptide from normal human urine. J Biol Chem. 1975 Jul 25;250(14):5312-4. [PubMed:1141232 ]
- Wulf G, Finn G, Suizu F, Lu KP: Phosphorylation-specific prolyl isomerization: is there an underlying theme? Nat Cell Biol. 2005 May;7(5):435-41. [PubMed:15867923 ]
- Takeda DY, Parvin JD, Dutta A: Degradation of Cdt1 during S phase is Skp2-independent and is required for efficient progression of mammalian cells through S phase. J Biol Chem. 2005 Jun 17;280(24):23416-23. Epub 2005 Apr 25. [PubMed:15855168 ]
- Nanda N, Bao M, Lin H, Clauser K, Komuves L, Quertermous T, Conley PB, Phillips DR, Hart MJ: Platelet endothelial aggregation receptor 1 (PEAR1), a novel epidermal growth factor repeat-containing transmembrane receptor, participates in platelet contact-induced activation. J Biol Chem. 2005 Jul 1;280(26):24680-9. Epub 2005 Apr 25. [PubMed:15851471 ]
- Boneh A, Korman SH, Sato K, Kanno J, Matsubara Y, Lerer I, Ben-Neriah Z, Kure S: A single nucleotide substitution that abolishes the initiator methionine codon of the GLDC gene is prevalent among patients with glycine encephalopathy in Jerusalem. J Hum Genet. 2005;50(5):230-4. Epub 2005 Apr 29. [PubMed:15864413 ]
- Elzinga M, Maron BJ, Adelstein RS: Human heart and platelet actins are products of different genes. Science. 1976 Jan 9;191(4222):94-5. [PubMed:1246600 ]
- Rodriguez-Soriano J, Vallo A, Perez de Nanclares G, Bilbao JR, Castano L: A founder mutation in the CLCNKB gene causes Bartter syndrome type III in Spain. Pediatr Nephrol. 2005 Jul;20(7):891-6. Epub 2005 May 5. [PubMed:15875219 ]
- Boehm G, Cervantes H, Georgi G, Jelinek J, Sawatzki G, Wermuth B, Colombo JP: Effect of increasing dietary threonine intakes on amino acid metabolism of the central nervous system and peripheral tissues in growing rats. Pediatr Res. 1998 Dec;44(6):900-6. [PubMed:9853925 ]
- Gu X, Huang X, Li D, Bi N, Yu X, Wang HL: Nuclear accumulation of histone deacetylase 4 (HDAC4) by PP1-mediated dephosphorylation exerts neurotoxicity in Pb-exposed neural cells. Neurotoxicology. 2020 Dec;81:395-405. doi: 10.1016/j.neuro.2020.10.006. Epub 2020 Oct 17. [PubMed:33080273 ]
|
---|