Np mrd loader

Record Information
Version2.0
Created at2005-11-16 15:48:42 UTC
Updated at2024-09-03 04:22:19 UTC
NP-MRD IDNP0001109
Natural Product DOIhttps://doi.org/10.57994/2816
Secondary Accession NumbersNone
Natural Product Identification
Common NameHomovanillic acid
DescriptionHomovanillic acid (HVA), also known as homovanillate, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. HVA is also classified as a catechol. HVA is a major catecholamine metabolite that is produced by a consecutive action of monoamine oxidase and catechol-O-methyltransferase on dopamine. HVA is typically elevated in patients with catecholamine-secreting tumors (such as neuroblastoma, pheochromocytoma, and other neural crest tumors). HVA levels are also used in monitoring patients who have been treated for these kinds tumors. HVA levels may also be altered in disorders of catecholamine metabolism such as monoamine oxidase-A (MOA) deficiency. MOA deficiency can cause decreased urinary HVA values, while a deficiency of dopamine beta-hydrolase (the enzyme that converts dopamine to norepinephrine) can cause elevated urinary HVA values. Within humans, HVA participates in a number of enzymatic reactions. In particular, HVA and pyrocatechol can be biosynthesized from 3,4-dihydroxybenzeneacetic acid and guaiacol. This reaction is catalyzed by the enzyme known as catechol O-methyltransferase. In addition, HVA can be biosynthesized from homovanillin through the action of the enzyme known aldehyde dehydrogenase. HVA has recently been found in a number of beers and appears to arise from the fermentation process (https://Doi.Org/10.1006/Fstl.1999.0593). HVA is also a metabolite of Bifidobacterium (PMID: 24958563 ) And the bacterial breakdown of dietary flavonoids. Dietary flavonols commonly found in tomatoes, onions, and tea, can lead to significantly elevated levels of urinary HVA (PMID: 20933512 ). Likewise, the microbial digestion of hydroxytyrosol (found in olive oil) can also lead to elevated levels of HVA in humans (PMID: 11929304 ).
Structure
Thumb
Synonyms
ValueSource
(4-Hydroxy-3-methoxyphenyl)acetic acidChEBI
3-Methoxy-4-hydroxyphenylacetateChEBI
3-Methoxy-4-hydroxyphenylacetic acidChEBI
4-Hydroxy-3-methoxybenzeneacetic acidChEBI
HVAChEBI
Vanillacetic acidChEBI
(4-Hydroxy-3-methoxyphenyl)acetateGenerator
4-Hydroxy-3-methoxybenzeneacetateGenerator
VanillacetateGenerator
HomovanillateGenerator
3-Methoxy-4-hydroxy-phenylacetic acidHMDB
4-Hydroxy 3-methoxyphenylacetic acidHMDB
4-Hydroxy-3-methoxyphenylacetic acidHMDB
HomovanilateHMDB
Homovanilic acidHMDB
Homovanillinic acidHMDB
VanilacetateHMDB
Vanilacetic acidHMDB
3 Methoxy 4 hydroxyphenylacetic acidHMDB
Acid, 3-methoxy-4-hydroxyphenylaceticHMDB
Acid, 4-hydroxy-3-methoxyphenylaceticHMDB
4 Hydroxy 3 methoxyphenylacetic acidHMDB
Acid, homovanillicHMDB
3'-Methoxy-4'-hydroxyphenylacetic acidHMDB
3’-methoxy-4’-hydroxyphenylacetic acidHMDB
4'-Hydroxy-3'-methoxy-phenylacetic acidHMDB
2-(4-Hydroxy-3-methoxyphenyl)acetic acidHMDB
4'-Hydroxy-3'-methoxyphenylacetic acidHMDB
Homovanillic acidHMDB
4-Hydroxy-3-methoxyphanylethanoic acid
Chemical FormulaC9H10O4
Average Mass182.1733 Da
Monoisotopic Mass182.05791 Da
IUPAC Name2-(4-hydroxy-3-methoxyphenyl)acetic acid
Traditional Namehomovanillic acid
CAS Registry Number306-08-1
SMILES
COC1=C(O)C=CC(CC(O)=O)=C1
InChI Identifier
InChI=1S/C9H10O4/c1-13-8-4-6(5-9(11)12)2-3-7(8)10/h2-4,10H,5H2,1H3,(H,11,12)
InChI KeyQRMZSPFSDQBLIX-UHFFFAOYSA-N
Experimental Spectra
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
HSQC NMR[1H, 13C] NMR Spectrum (2D, 600 MHz, CD3OD, experimental)bgnzk@missouri.eduSumner Lab, MU Metabolomics Center, University of Missouri, Columbia. MO, USADr. Bharat Goel2024-06-14View Spectrum
HMBC NMR[1H, 13C] NMR Spectrum (2D, 600 MHz, CD3OD, experimental)bgnzk@missouri.eduSumner Lab, MU Metabolomics Center, University of Missouri, Columbia. MO, USADr. Bharat Goel2024-06-14View Spectrum
COSY NMR[1H, 1H] NMR Spectrum (2D, 600 MHz, CD3OD, experimental)bgnzk@missouri.eduSumner Lab, MU Metabolomics Center, University of Missouri, Columbia. MO, USADr. Bharat Goel2024-06-14View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, CD3OD, experimental)bgnzk@missouri.eduSumner Lab, MU Metabolomics Center, University of Missouri, Columbia. MO, USADr. Bharat Goel2024-06-14View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, CD3OD, experimental)bgnzk@missouri.eduSumner Lab, MU Metabolomics Center, University of Missouri, Columbia. MO, USADr. Bharat Goel2024-06-14View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, experimental)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
2D NMR[1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
Chemical Shift Submissions
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
1D NMR1H NMR Spectrum (1D, 600, CD3OD, simulated)bgnzk@missouri.eduSumner Lab, MU Metabolomics Center, University of Missouri, Columbia. MO, USADr. Bharat Goel2024-06-14View Spectrum
Species
Species of Origin
Species NameSourceReference
Aloe africanaLOTUS Database
Anas platyrhynchosFooDB
AnatidaeFooDB
Annona squamosaKNApSAcK Database
Anser anserFooDB
Bison bisonFooDB
Bos taurusFooDB
Bos taurus X Bison bisonFooDB
Bubalus bubalisFooDB
Cannabis sativaCannabisDB
      Not Available
Capra aegagrus hircusFooDB
CervidaeFooDB
Cervus canadensisFooDB
ColumbaFooDB
ColumbidaeFooDB
Dromaius novaehollandiaeFooDB
Equus caballusFooDB
Gallus gallusFooDB
Ginkgo bilobaLOTUS Database
Homo sapiensLOTUS Database
Lagopus mutaFooDB
LeporidaeFooDB
Lepus timidusFooDB
Melanitta fuscaFooDB
Meleagris gallopavoFooDB
Mus musculusLOTUS Database
Numida meleagrisFooDB
OdocoileusFooDB
Olea europaeaFooDB
OryctolagusFooDB
Ovis ariesFooDB
Persea americanaKNApSAcK Database
PhasianidaeFooDB
Phasianus colchicusFooDB
Struthio camelusFooDB
Sus scrofaFooDB
Sus scrofa domesticaFooDB
Vicia fabaKNApSAcK Database
Zingiber officinaleLOTUS Database
Species Where Detected
Species NameSourceReference
Homo sapiens (Urine)KNApSAcK Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety.
KingdomOrganic compounds
Super ClassBenzenoids
ClassPhenols
Sub ClassMethoxyphenols
Direct ParentMethoxyphenols
Alternative Parents
Substituents
  • Methoxyphenol
  • Phenoxy compound
  • Anisole
  • Methoxybenzene
  • Phenol ether
  • 1-hydroxy-2-unsubstituted benzenoid
  • Alkyl aryl ether
  • Monocyclic benzene moiety
  • Carboxylic acid derivative
  • Monocarboxylic acid or derivatives
  • Ether
  • Carboxylic acid
  • Organic oxygen compound
  • Organooxygen compound
  • Carbonyl group
  • Hydrocarbon derivative
  • Organic oxide
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External Descriptors
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point138 - 140 °CNot Available
Boiling Point368.00 to 369.00 °C. @ 760.00 mm Hg (est)The Good Scents Company Information System
Water Solubility17 mg/mLNot Available
LogP0.33Not Available
Predicted Properties
PropertyValueSource
Water Solubility2.72 g/LALOGPS
logP1.02ALOGPS
logP1.15ChemAxon
logS-1.8ALOGPS
pKa (Strongest Acidic)3.74ChemAxon
pKa (Strongest Basic)-4.9ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area66.76 ŲChemAxon
Rotatable Bond Count3ChemAxon
Refractivity45.81 m³·mol⁻¹ChemAxon
Polarizability17.74 ųChemAxon
Number of Rings1ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDHMDB0000118
DrugBank IDNot Available
Phenol Explorer Compound ID574
FoodDB IDFDB001783
KNApSAcK IDC00029504
Chemspider ID1675
KEGG Compound IDC05582
BioCyc IDCPD-7651
BiGG ID46066
Wikipedia LinkHomovanillic_acid
METLIN ID971
PubChem Compound1738
PDB IDNot Available
ChEBI ID545959
Good Scents IDrw1250461
References
General References
  1. Goldstein DS, Eisenhofer G, Kopin IJ: Sources and significance of plasma levels of catechols and their metabolites in humans. J Pharmacol Exp Ther. 2003 Jun;305(3):800-11. Epub 2003 Mar 20. [PubMed:12649306 ]
  2. Hyland K, Gunasekara RS, Munk-Martin TL, Arnold LA, Engle T: The hph-1 mouse: a model for dominantly inherited GTP-cyclohydrolase deficiency. Ann Neurol. 2003;54 Suppl 6:S46-8. [PubMed:12891653 ]
  3. Sjoberg S, Eriksson M, Nordin C: L-thyroxine treatment and neurotransmitter levels in the cerebrospinal fluid of hypothyroid patients: a pilot study. Eur J Endocrinol. 1998 Nov;139(5):493-7. [PubMed:9849813 ]
  4. Eklundh T, Eriksson M, Sjoberg S, Nordin C: Monoamine precursors, transmitters and metabolites in cerebrospinal fluid: a prospective study in healthy male subjects. J Psychiatr Res. 1996 May-Jun;30(3):201-8. [PubMed:8884658 ]
  5. Needlman R, Zuckerman B, Anderson GM, Mirochnick M, Cohen DJ: Cerebrospinal fluid monoamine precursors and metabolites in human neonates following in utero cocaine exposure: a preliminary study. Pediatrics. 1993 Jul;92(1):55-60. [PubMed:8516085 ]
  6. Houston JP, Maas JW, Bowden CL, Contreras SA, McIntyre KL, Javors MA: Cerebrospinal fluid HVA, central brain atrophy, and clinical state in schizophrenia. Psychiatry Res. 1986 Nov;19(3):207-14. [PubMed:3797547 ]
  7. Scatton B, Dennis T, L'Heureux R, Monfort JC, Duyckaerts C, Javoy-Agid F: Degeneration of noradrenergic and serotonergic but not dopaminergic neurones in the lumbar spinal cord of parkinsonian patients. Brain Res. 1986 Aug 13;380(1):181-5. [PubMed:2428421 ]
  8. Javors MA, Bowden CL, Maas JW: 3-methoxy-4-hydroxyphenylglycol, 5-hydroxyindoleacetic acid, and homovanillic acid in human cerebrospinal fluid. Storage and measurement by reversed-phase high-performance liquid chromatography and coulometric detection using 3-methoxy-4-hydroxyphenyllactic acid as an internal standard. J Chromatogr. 1984 Dec 12;336(2):259-69. [PubMed:6085084 ]
  9. Court JA, Lloyd S, Thomas N, Piggott MA, Marshall EF, Morris CM, Lamb H, Perry RH, Johnson M, Perry EK: Dopamine and nicotinic receptor binding and the levels of dopamine and homovanillic acid in human brain related to tobacco use. Neuroscience. 1998 Nov;87(1):63-78. [PubMed:9722142 ]
  10. Reynolds GP, Garrett NJ: Striatal dopamine and homovanillic acid in Huntington's disease. J Neural Transm. 1986;65(2):151-5. [PubMed:2939198 ]
  11. Kay AD, Schapiro MB, Riker AK, Haxby JV, Rapoport SI, Cutler NR: Cerebrospinal fluid monoaminergic metabolites are elevated in adults with Down's syndrome. Ann Neurol. 1987 Apr;21(4):408-11. [PubMed:2437853 ]
  12. Lovenberg W, Levine RA, Robinson DS, Ebert M, Williams AC, Calne DB: Hydroxylase cofactor activity in cerebrospinal fluid of normal subjects and patients with Parkinson's disease. Science. 1979 May 11;204(4393):624-6. [PubMed:432666 ]
  13. Ruberg M, Javoy-Agid F, Hirsch E, Scatton B, LHeureux R, Hauw JJ, Duyckaerts C, Gray F, Morel-Maroger A, Rascol A, et al.: Dopaminergic and cholinergic lesions in progressive supranuclear palsy. Ann Neurol. 1985 Nov;18(5):523-9. [PubMed:3000280 ]
  14. Kaminski R, Powchick P, Warne PA, Goldstein M, McQueeney RT, Davidson M: Measurement of plasma homovanillic acid concentrations in schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry. 1990;14(3):271-87. [PubMed:2193315 ]
  15. Birkmayer W, Birkmayer GJ: Nicotinamidadenindinucleotide (NADH): the new approach in the therapy of Parkinson's disease. Ann Clin Lab Sci. 1989 Jan-Feb;19(1):38-43. [PubMed:2644889 ]
  16. Lambert GW, Eisenhofer G, Jennings GL, Esler MD: Regional homovanillic acid production in humans. Life Sci. 1993;53(1):63-75. [PubMed:8515683 ]
  17. Pifl C, Schingnitz G, Hornykiewicz O: The neurotoxin MPTP does not reproduce in the rhesus monkey the interregional pattern of striatal dopamine loss typical of human idiopathic Parkinson's disease. Neurosci Lett. 1988 Oct 5;92(2):228-33. [PubMed:3263594 ]
  18. Grant DB, Dunger DB, Smith I, Hyland K: Familial glucocorticoid deficiency with achalasia of the cardia associated with mixed neuropathy, long-tract degeneration and mild dementia. Eur J Pediatr. 1992 Feb;151(2):85-9. [PubMed:1537368 ]
  19. Eriksson E, Westberg P, Alling C, Thuresson K, Modigh K: Cerebrospinal fluid levels of monoamine metabolites in panic disorder. Psychiatry Res. 1991 Mar;36(3):243-51. [PubMed:1712114 ]
  20. Lepore V, Di Reda N, Defazio G, Pedone D, Giovine A, Lanzi C, Tartaglione B, Livrea P: Dopaminomimetic action of diphenylhydantoin in rat striatum: effect on homovanillic acid and cyclic AMP levels. Psychopharmacology (Berl). 1985;86(1-2):27-30. [PubMed:2991966 ]
  21. Levreri I, Caruso U, Deiana F, Buoncompagni A, De Bernardi B, Marchese N, Melioli G: The secretion of ibuprofen metabolites interferes with the capillary chromatography of urinary homovanillic acid and 4-hydroxy-3-methoxymandelic acid in neuroblastoma diagnosis. Clin Chem Lab Med. 2005;43(2):173-7. [PubMed:15843212 ]
  22. Broderick PA, Barr GA, Sharpless NS, Bridger WH: Biogenic amine alterations in limbic brain regions of muricidal rats. Res Commun Chem Pathol Pharmacol. 1985 Apr;48(1):3-15. [PubMed:2581293 ]
  23. Sullivan GM, Oquendo MA, Huang YY, Mann JJ: Elevated cerebrospinal fluid 5-hydroxyindoleacetic acid levels in women with comorbid depression and panic disorder. Int J Neuropsychopharmacol. 2006 Oct;9(5):547-56. Epub 2005 Nov 1. [PubMed:16259647 ]
  24. Lekman A, Witt-Engerstrom I, Gottfries J, Hagberg BA, Percy AK, Svennerholm L: Rett syndrome: biogenic amines and metabolites in postmortem brain. Pediatr Neurol. 1989 Nov-Dec;5(6):357-62. [PubMed:2604799 ]
  25. Losonczy MF, Song IS, Mohs RC, Mathe AA, Davidson M, Davis BM, Davis KL: Correlates of lateral ventricular size in chronic schizophrenia, II: biological measures. Am J Psychiatry. 1986 Sep;143(9):1113-8. [PubMed:2428259 ]
  26. Seeldrayers P, Messina D, Desmedt D, Dalesio O, Hildebrand J: CSF levels of neurotransmitters in Alzheimer-type dementia. Effects of ergoloid mesylate. Acta Neurol Scand. 1985 May;71(5):411-4. [PubMed:2409733 ]
  27. Lembreghts M, Ansseau M: [Biological markers in schizophrenia]. Encephale. 1993 Sep-Oct;19(5):501-23. [PubMed:8306920 ]
  28. Dale G, McGill AC, Seviour JA, Craft AW: Urinary excretion of HMMA and HVA in infants. Ann Clin Biochem. 1988 May;25 ( Pt 3):233-6. [PubMed:3400977 ]
  29. Sardar AM, Czudek C, Reynolds GP: Dopamine deficits in the brain: the neurochemical basis of parkinsonian symptoms in AIDS. Neuroreport. 1996 Mar 22;7(4):910-2. [PubMed:8724671 ]
  30. Ali SF, Kordsmeier KJ, Gough B: Drug-induced circling preference in rats. Correlation with monoamine levels. Mol Neurobiol. 1995 Aug-Dec;11(1-3):145-54. [PubMed:8561958 ]
  31. von Holst H, Lindquist C, Sedvall G: Increased concentrations of the monoamine metabolites homovanillic acid and 5-hydroxyindoleacetic acid in lumbar and central CSF and of 3-methoxy-4-hydroxyphenylglycol in lumbar CSF after subarachnoid haemorrhage. Acta Neurochir (Wien). 1985;77(3-4):146-51. [PubMed:2416192 ]
  32. Strittmatter M, Isenberg E, Grauer MT, Hamann G, Schimrigk K: CSF substance P somatostatin and monoaminergic transmitter metabolites in patients with narcolepsy. Neurosci Lett. 1996 Nov 1;218(2):99-102. [PubMed:8945737 ]
  33. Curtin F, Walker JP, Peyrin L, Soulier V, Badan M, Schulz P: Reward dependence is positively related to urinary monoamines in normal men. Biol Psychiatry. 1997 Aug 15;42(4):275-81. [PubMed:9270904 ]
  34. Abramowsky CR, Taylor SR, Anton AH, Berk AI, Roederer M, Murphy RF: Flow cytometry DNA ploidy analysis and catecholamine secretion profiles in neuroblastoma. Cancer. 1989 May 1;63(9):1752-6. [PubMed:2702581 ]
  35. Sumiyoshi T, Yotsutsuji T, Kurachi M, Itoh H, Kurokawa K, Saitoh O: Effect of mental stress on plasma homovanillic acid in healthy human subjects. Neuropsychopharmacology. 1998 Jul;19(1):70-3. [PubMed:9608578 ]
  36. Jolicoeur FB, Rivest R, Drumheller A: Hypokinesia, rigidity, and tremor induced by hypothalamic 6-OHDA lesions in the rat. Brain Res Bull. 1991 Feb;26(2):317-20. [PubMed:1901508 ]
  37. Harnryd C, Bjerkenstedt L, Grimm VE, Sedvall G: Reduction of MOPEG levels in cerebrospinal fluid of psychotic women after electroconvulsive treatment. Psychopharmacology (Berl). 1979 Aug 8;64(2):131-4. [PubMed:115032 ]
  38. di Rocco A, Bottiglieri T, Dorfman D, Werner P, Morrison C, Simpson D: Decreased homovanilic acid in cerebrospinal fluid correlates with impaired neuropsychologic function in HIV-1-infected patients. Clin Neuropharmacol. 2000 Jul-Aug;23(4):190-4. [PubMed:11020122 ]
  39. Van Der Heyden JC, Rotteveel JJ, Wevers RA: Decreased homovanillic acid concentrations in cerebrospinal fluid in children without a known defect in dopamine metabolism. Eur J Paediatr Neurol. 2003;7(1):31-7. [PubMed:12615172 ]
  40. Brautigam C, Wevers RA, Jansen RJ, Smeitink JA, de Rijk-van Andel JF, Gabreels FJ, Hoffmann GF: Biochemical hallmarks of tyrosine hydroxylase deficiency. Clin Chem. 1998 Sep;44(9):1897-904. [PubMed:9732974 ]
  41. Amin F, Stroe AE, Kahn T, Knott PJ, Kahn RS, Davidson M: Control of renal factors in plasma homovanillic acid measurements. Neuropsychopharmacology. 1998 Apr;18(4):317-20. [PubMed:9509499 ]
  42. Mashige F, Ohkubo A, Matsushima Y, Takano M, Tsuchiya E, Kanazawa H, Nagata Y, Takai N, Shinozuka N, Sakuma I: High-performance liquid chromatographic determination of catecholamine metabolites and 5-hydroxyindoleacetic acid in human urine using a mixed-mode column and an eight-channel electrode electrochemical detector. J Chromatogr B Biomed Appl. 1994 Aug 5;658(1):63-8. [PubMed:7524950 ]
  43. Lambert GW, Eisenhofer G, Esler MD: The influence of aging on the plasma concentration and renal clearance of homovanillic acid. Psychoneuroendocrinology. 1994;19(1):33-41. [PubMed:9210210 ]
  44. Konradi C, Kornhuber J, Sofic E, Heckers S, Riederer P, Beckmann H: Variations of monoamines and their metabolites in the human brain putamen. Brain Res. 1992 May 8;579(2):285-90. [PubMed:1628216 ]
  45. Riddle MA, Jatlow PI, Anderson GM, Cho SC, Hardin MT, Cohen DJ, Leckman JF: Plasma debrisoquin levels in the assessment of reduction of plasma homovanillic acid. The debrisoquin method. Neuropsychopharmacology. 1989 Jun;2(2):123-9. [PubMed:2742727 ]
  46. Honma T, Miyagawa M, Suda M, Wang RS, Kobayashi K, Sekiguchi S: Effects of perinatal exposure to bisphenol A on brain neurotransmitters in female rat offspring. Ind Health. 2006 Jul;44(3):510-24. [PubMed:16922197 ]
  47. Sambo P, Baroni SS, Luchetti M, Paroncini P, Dusi S, Orlandini G, Gabrielli A: Oxidative stress in scleroderma: maintenance of scleroderma fibroblast phenotype by the constitutive up-regulation of reactive oxygen species generation through the NADPH oxidase complex pathway. Arthritis Rheum. 2001 Nov;44(11):2653-64. [PubMed:11710721 ]
  48. Ferreira C, Paes M, Gouveia A, Ferreira E, Padua F, Fiuza T: Plasma homovanillic acid and prolactin in systemic lupus erythematosus. Lupus. 1998;7(6):392-7. [PubMed:9736322 ]
  49. Post RM, Goodwin FK: Time-dependent effects of phenothiazines on dopamine turnover in psychiatric patients. Science. 1975 Oct 31;190(4213):488-9. [PubMed:1166321 ]
  50. Azzaro AJ, King J, Kotzuk J, Schoepp DD, Frost J, Schochet S: Guinea pig striatum as a model of human dopamine deamination: the role of monoamine oxidase isozyme ratio, localization, and affinity for substrate in synaptic dopamine metabolism. J Neurochem. 1985 Sep;45(3):949-56. [PubMed:3928811 ]
  51. Silbergeld EK, Chisolm JJ Jr: Lead poisoning: altered urinary catecholamine metabolites as indicators of intoxication in mice and children. Science. 1976 Apr 9;192(4235):153-5. [PubMed:1257763 ]
  52. Kish SJ, Shannak K, Rajput A, Deck JH, Hornykiewicz O: Aging produces a specific pattern of striatal dopamine loss: implications for the etiology of idiopathic Parkinson's disease. J Neurochem. 1992 Feb;58(2):642-8. [PubMed:1729408 ]
  53. Kania BF: Presynaptic stimulation of dopaminergic CNS structures in sheep as a mechanism of immobilising action of Immobyl (fentanyl + azaperone). Res Vet Sci. 1985 Mar;38(2):179-83. [PubMed:4039834 ]
  54. Ebinger G, Michotte Y, Herregodts P: The significance of homovanillic acid and 3,4-dihydroxyphenylacetic acid concentrations in human lumbar cerebrospinal fluid. J Neurochem. 1987 Jun;48(6):1725-9. [PubMed:3572399 ]
  55. Burman P, Hetta J, Wide L, Mansson JE, Ekman R, Karlsson FA: Growth hormone treatment affects brain neurotransmitters and thyroxine [see comment]. Clin Endocrinol (Oxf). 1996 Mar;44(3):319-24. [PubMed:8729530 ]
  56. Narayan M, Srinath S, Anderson GM, Meundi DB: Cerebrospinal fluid levels of homovanillic acid and 5-hydroxyindoleacetic acid in autism. Biol Psychiatry. 1993 Apr 15-May 1;33(8-9):630-5. [PubMed:7687150 ]
  57. Hagenfeldt L, Bjerkenstedt L, Edman G, Sedvall G, Wiesel FA: Amino acids in plasma and CSF and monoamine metabolites in CSF: interrelationship in healthy subjects. J Neurochem. 1984 Mar;42(3):833-7. [PubMed:6198473 ]
  58. Bowers MB Jr, Hoffman FJ Jr, Morton JB: Diazepam and haloperidol. Effect on regional brain homovanillic acid levels. Neuropsychopharmacology. 1991 Aug;5(1):65-9. [PubMed:1930613 ]
  59. Amin F, Silverman JM, Siever LJ, Smith CJ, Knott PJ, Davis KL: Genetic antecedents of dopamine dysfunction in schizophrenia. Biol Psychiatry. 1999 May 1;45(9):1143-50. [PubMed:10331106 ]
  60. Boto-Ordonez M, Urpi-Sarda M, Queipo-Ortuno MI, Tulipani S, Tinahones FJ, Andres-Lacueva C: High levels of Bifidobacteria are associated with increased levels of anthocyanin microbial metabolites: a randomized clinical trial. Food Funct. 2014 Aug;5(8):1932-8. doi: 10.1039/c4fo00029c. [PubMed:24958563 ]
  61. Combet E, Lean ME, Boyle JG, Crozier A, Davidson DF: Dietary flavonols contribute to false-positive elevation of homovanillic acid, a marker of catecholamine-secreting tumors. Clin Chim Acta. 2011 Jan 14;412(1-2):165-9. doi: 10.1016/j.cca.2010.09.037. Epub 2010 Oct 8. [PubMed:20933512 ]
  62. Tuck KL, Hayball PJ, Stupans I: Structural characterization of the metabolites of hydroxytyrosol, the principal phenolic component in olive oil, in rats. J Agric Food Chem. 2002 Apr 10;50(8):2404-9. doi: 10.1021/jf011264n. [PubMed:11929304 ]