Np mrd loader

Record Information
Version2.0
Created at2012-09-11 17:38:57 UTC
Updated at2024-09-17 15:43:58 UTC
NP-MRD IDNP0001097
Secondary Accession NumbersNone
Natural Product Identification
Common NameMaltol
DescriptionMaltol, also known as E636 or fema 2656, belongs to the class of organic compounds known as pyranones and derivatives. Pyranones and derivatives are compounds containing a pyran ring which bears a ketone. Some synthetic derivatives of maltol, developed at the University of Urbino, showed limited in vitro antiproliferative activity towards cancer cells lines, perhaps inducing apoptosis in these cells. Maltol is a sweet, baked, and bread tasting compound. Maltol has been detected, but not quantified, in several different foods, such as milk and milk products, nuts, soy beans, pepper (c. Annuum), and coffee and coffee products. Maltol's sweetness adds to the odor of freshly baked bread, and is used as a flavor enhancer (INS Number 636) in breads and cakes. Related to this property, maltol has been reported to greatly increase aluminum uptake in the body and to increase the oral bioavailability of gallium and iron. Maltol is a naturally occurring organic compound that is used primarily as a flavor enhancer. It is a white crystalline powder that is soluble in hot water, chloroform, and other polar solvents. Maltol is registered as a flavor component in the EU. Maltol, like related 3-hydroxy-4-pyrones such as kojic acid, binds to hard metal centers such as Fe3+, Ga3+, Al3+, and VO2+. It is known in the European E number food additive series as E636. Because it has the odor of cotton candy and caramel, maltol is used to impart a sweet aroma to fragrances.
Structure
Thumb
Synonyms
ValueSource
e636HMDB
2-Hydroxy-3-methyl-4H-pyran-4-oneHMDB
2-Methyl pyromeconic acidHMDB
2-Methyl-3-hydroxy-4-pyranoneHMDB
2-Methyl-3-hydroxy-4-pyroneHMDB
2-Methyl-3-hydroxypyroneHMDB
2-Methyl-3-oxy-gamma-pyroneHMDB
3-Hydroxy-2-methyl-1,4-pyroneHMDB
3-Hydroxy-2-methyl-4-pyranoneHMDB
3-Hydroxy-2-methyl-4-pyroneHMDB
3-Hydroxy-2-methyl-4H-pyran-4-oneHMDB
3-Hydroxy-2-methyl-g-pyroneHMDB
3-Hydroxy-2-methyl-gamma-pyroneHMDB
3-Hydroxy-2-methylpyroneHMDB
3-Hydroxy-2-pyran-4-oneHMDB
5-Hydroxy-6-methyl-4H-pyran-4-oneHMDB
FEMA 2656HMDB
Laricinic acidHMDB
Larixic acidHMDB
Larixinic acidHMDB
PalatoneHMDB
TalmonHMDB
VeltolHMDB
VetolHMDB
Chemical FormulaC6H6O3
Average Mass126.1100 Da
Monoisotopic Mass126.03169 Da
IUPAC Name3-hydroxy-2-methyl-4H-pyran-4-one
Traditional Nametalmon
CAS Registry Number118-71-8
SMILES
CC1=C(O)C(=O)C=CO1
InChI Identifier
InChI=1S/C6H6O3/c1-4-6(8)5(7)2-3-9-4/h2-3,8H,1H3
InChI KeyXPCTZQVDEJYUGT-UHFFFAOYSA-N
Experimental Spectra
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Abies koreanaLOTUS Database
Abies sibiricaLOTUS Database
Bolbostemma paniculatumLOTUS Database
Capsicum annuumFooDB
Cercidiphyllum japonicumLOTUS Database
Coffea arabicaLOTUS Database
Coffea arabica L.FooDB
    • Shmuel Yannai Dictionary of Food Compounds with CD-ROM: Additives, Flavors, and Ingredients. Chap...
Coffea canephoraFooDB
    • Shmuel Yannai Dictionary of Food Compounds with CD-ROM: Additives, Flavors, and Ingredients. Chap...
Glycine maxFooDB
Glycyrrhiza glabraLOTUS Database
Hyacinthoides non-scriptaLOTUS Database
Macrothelypteris oligophlebiaKNApSAcK Database
Macrothelypteris torresianaLOTUS Database
Ophiocordyceps sinensisLOTUS Database
Panax ginsengLOTUS Database
Passiflora incarnataLOTUS Database
Phaseolus vulgarisLOTUS Database
Prangos tschimganicaKNApSAcK Database
Rubus idaeusFooDB
Scutellaria baicalensisLOTUS Database
Theobroma cacaoFooDB
    • Shmuel Yannai Dictionary of Food Compounds with CD-ROM: Additives, Flavors, and Ingredients. Chap...
Trifolium repensLOTUS Database
Vigna radiataFooDB
Vitis viniferaLOTUS Database
Species Where Detected
Species NameSourceReference
Streptomyces sp. GW23/1540KNApSAcK Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as pyranones and derivatives. Pyranones and derivatives are compounds containing a pyran ring which bears a ketone.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassPyrans
Sub ClassPyranones and derivatives
Direct ParentPyranones and derivatives
Alternative Parents
Substituents
  • Pyranone
  • Heteroaromatic compound
  • Cyclic ketone
  • Oxacycle
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Aromatic heteromonocyclic compound
Molecular FrameworkAromatic heteromonocyclic compounds
External Descriptors
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point161 - 162 °CNot Available
Boiling Point284.70 °C. @ 760.00 mm Hg (est)The Good Scents Company Information System
Water Solubility10.9 mg/mL at 15 °CNot Available
LogP0.09Not Available
Predicted Properties
PropertyValueSource
Water Solubility134 g/LALOGPS
logP-0.24ALOGPS
logP0.55ChemAxon
logS0.03ALOGPS
pKa (Strongest Acidic)9.45ChemAxon
pKa (Strongest Basic)-3.6ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area46.53 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity33.72 m³·mol⁻¹ChemAxon
Polarizability11.6 ųChemAxon
Number of Rings1ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDHMDB0030776
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB002712
KNApSAcK IDC00037471
Chemspider ID8066
KEGG Compound IDC11918
BioCyc IDCPD-15508
BiGG IDNot Available
Wikipedia LinkMaltol
METLIN IDNot Available
PubChem Compound8369
PDB IDNot Available
ChEBI ID142577
Good Scents IDrw1002341
References
General References
  1. Khachatoorian C, McWhirter KJ, Luo W, Pankow JF, Talbot P: Tracing the movement of electronic cigarette flavor chemicals and nicotine from refill fluids to aerosol, lungs, exhale, and the environment. Chemosphere. 2021 Jul 10;286(Pt 3):131494. doi: 10.1016/j.chemosphere.2021.131494. [PubMed:34392198 ]
  2. Ginieis R, Abeywickrema S, Oey I, Franz EA, Perry T, Keast RSJ, Peng M: The role of an individual's olfactory discriminability in influencing snacking and habitual energy intake. Appetite. 2021 Aug 12;167:105646. doi: 10.1016/j.appet.2021.105646. [PubMed:34390779 ]
  3. Eftekharivash L, Hamedi J, Zarrini G, Bakhtiari R: Acidophilic and Acid Tolerant Actinobacteria as New Sources of Antimicrobial Agents against Helicobacter Pylori. Arch Razi Inst. 2021 Jul;76(2):261-272. doi: 10.22092/ari.2019.128039.1401. Epub 2021 Jul 1. [PubMed:34223725 ]
  4. Mahalhal A, Frau A, Burkitt MD, Ijaz UZ, Lamb CA, Mansfield JC, Lewis S, Pritchard DM, Probert CS: Oral Ferric Maltol Does Not Adversely Affect the Intestinal Microbiome of Patients or Mice, But Ferrous Sulphate Does. Nutrients. 2021 Jun 30;13(7). pii: nu13072269. doi: 10.3390/nu13072269. [PubMed:34209042 ]
  5. Kai ZP, Qiu Y, Zhang XW, Chen SS: Effects of fragrance compounds on growth of the silkworm Bombyx mori. PeerJ. 2021 Jun 16;9:e11620. doi: 10.7717/peerj.11620. eCollection 2021. [PubMed:34178474 ]
  6. Anticoi M, Duran E, Avendano C, Pizarro F, Figueroa J, Guzman-Pino SA, Valenzuela C: Novel edible toys as iron carrier to prevent iron deficiency of postweaned pigs. Animal. 2021 Jul;15(7):100256. doi: 10.1016/j.animal.2021.100256. Epub 2021 Jun 4. [PubMed:34098521 ]
  7. Park I, Goo D, Nam H, Wickramasuriya SS, Lee K, Zimmerman NP, Smith AH, Rehberger TG, Lillehoj HS: Effects of Dietary Maltol on Innate Immunity, Gut Health, and Growth Performance of Broiler Chickens Challenged With Eimeria maxima. Front Vet Sci. 2021 May 20;8:667425. doi: 10.3389/fvets.2021.667425. eCollection 2021. [PubMed:34095279 ]
  8. Kontoghiorghes GJ, Kolnagou A, Demetriou T, Neocleous M, Kontoghiorghe CN: New Era in the Treatment of Iron Deficiency Anaemia Using Trimaltol Iron and Other Lipophilic Iron Chelator Complexes: Historical Perspectives of Discovery and Future Applications. Int J Mol Sci. 2021 May 24;22(11). pii: ijms22115546. doi: 10.3390/ijms22115546. [PubMed:34074010 ]
  9. Wang S, Chang Y, Liu B, Chen H, Sun B, Zhang N: Characterization of the Key Aroma-Active Compounds in Yongchuan Douchi (Fermented Soybean) by Application of the Sensomics Approach. Molecules. 2021 May 20;26(10). pii: molecules26103048. doi: 10.3390/molecules26103048. [PubMed:34065280 ]
  10. Pergola PE, Kopyt NP: Oral Ferric Maltol for the Treatment of Iron-Deficiency Anemia in Patients With CKD: A Randomized Trial and Open-Label Extension. Am J Kidney Dis. 2021 May 23. pii: S0272-6386(21)00624-7. doi: 10.1053/j.ajkd.2021.03.020. [PubMed:34029682 ]
  11. Sha JY, Li JH, Zhou YD, Yang JY, Liu W, Jiang S, Wang YP, Zhang R, Di P, Li W: The p53/p21/p16 and PI3K/Akt signaling pathways are involved in the ameliorative effects of maltol on D-galactose-induced liver and kidney aging and injury. Phytother Res. 2021 Aug;35(8):4411-4424. doi: 10.1002/ptr.7142. Epub 2021 May 24. [PubMed:34028092 ]
  12. Chen Z, Xi G, Fu Y, Wang Q, Cai L, Zhao Z, Liu Q, Bai B, Ma Y: Synthesis of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one from maltol and its taste identification. Food Chem. 2021 Nov 1;361:130052. doi: 10.1016/j.foodchem.2021.130052. Epub 2021 May 13. [PubMed:34023685 ]
  13. Rajapaksha RD, Tehrani MW, Rule AM, Harb CC: A Rapid and Sensitive Chemical Screening Method for E-Cigarette Aerosols Based on Runtime Cavity Ringdown Spectroscopy. Environ Sci Technol. 2021 Jun 15;55(12):8090-8096. doi: 10.1021/acs.est.0c07325. Epub 2021 May 21. [PubMed:34018733 ]
  14. Jarrell ZR, Smith MR, He X, Orr M, Jones DP, Go YM: Firsthand and Secondhand Exposure Levels of Maltol-Flavored Electronic Nicotine Delivery System Vapors Disrupt Amino Acid Metabolism. Toxicol Sci. 2021 Jul 16;182(1):70-81. doi: 10.1093/toxsci/kfab051. [PubMed:34009373 ]
  15. Bhinge SD, Bhutkar MA, Randive DS, Wadkar GH, Todkar SS, Savali AS, Chittapurkar HR: Screening of hair growth promoting activity of Punica granatum L. (pomegranate) leaves extracts and its potential to exhibit antidandruff and anti-lice effect. Heliyon. 2021 Apr 27;7(4):e06903. doi: 10.1016/j.heliyon.2021.e06903. eCollection 2021 Apr. [PubMed:33997417 ]
  16. (). Yannai, Shmuel. (2004) Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC.. .