Np mrd loader

Record Information
Version1.0
Created at2005-11-16 15:48:42 UTC
Updated at2024-04-19 10:07:04 UTC
NP-MRD IDNP0001076
Secondary Accession NumbersNone
Natural Product Identification
Common NameQuinolinic acid
DescriptionQuinolinic acid, also known as quinolinate, belongs to the class of organic compounds known as pyridinecarboxylic acids. Pyridinecarboxylic acids are compounds containing a pyridine ring bearing a carboxylic acid group. It is also classified as a pyridine-2,3-dicarboxylic acid, which is a dicarboxylic acid with a pyridine backbone. Quinolinic acid is a colorless solid. In plants, it is the biosynthetic precursor to nicotine. Quinolinic acid is found in all organisms, from microbes to plants to animals. Quinolinic acid can be biosynthesized via aspartic acid in plants. Oxidation of aspartate by the enzyme aspartate oxidase gives iminosuccinate, containing the two carboxylic acid groups that are found in quinolinic acid. Condensation of iminosuccinate with glyceraldehyde-3-phosphate, mediated by quinolinate synthase, affords quinolinic acid Quinolinic acid is also a downstream product of the kynurenine pathway, which metabolizes the amino acid tryptophan ((PMID: 22678511 ). The kynurenine/tryptophan degradation pathway is important for its production of the coenzyme nicotinamide adenine dinucleotide (NAD+) and produces several neuroactive intermediates including quinolinic acid, kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), and 3-hydroxyanthranilic acid (3-HANA). In animals quinolinic acid acts as an NMDA receptor agonist and has a possible role in neurodegenerative disorders (PMID: 22678511 ). It also acts as a neurotoxin, gliotoxin, proinflammatory mediator, and pro-oxidant molecule (PMID: 22248144 ). Quinolinic acid can act as an endogenous brain excitotoxin when released by activated macrophages (PMID: 15013955 ). Within the brain, quinolinic acid is only produced by activated microglia and macrophages. Quinolinic acid is unable to pass through the blood-brain barrier (BBB) and must be produced within the brain by microglial cells or macrophages that have passed the BBB (PMID: 22248144 ). While quinolinic acid cannot pass through the BBB, kynurenic acid, tryptophan and 3-hydroxykynurenine can and can subsequently act as precursors to the production of quinolinic acid in the brain (PMID: 22248144 ). Quinolinic acid has potent neurotoxic effects. Studies have demonstrated that quinolinic acid may be involved in many psychiatric disorders and neurodegenerative diseases in the brain including ALS, Alzheimer’s disease, brain ischemia, Parkinson’s disease, Huntington’s disease and AIDS-dementia. Elevated CSF levels of quinolinic acid are correlated with the severity of neuropsychological deficits in patients who have AIDS. Indeed, levels of quinolinic acid in the CSF of AIDS patients suffering from AIDS-dementia can be up to twenty times higher than normal (PMID: 10936623 ). Quinolinic acid levels are increased in the brains of children infected with a range of bacterial infections of the central nervous system (CNS), of poliovirus patients, and of Lyme disease with CNS involvement patients. In addition, raised quinolinic acid levels have been found in traumatic CNS injury patients, patients suffering from cognitive decline with ageing, hyperammonaemia patients, hypoglycaemia patients, and systemic lupus erythematosus patients. Quinolinic acid has also been detected, but not quantified in, several different foods, such as Ceylon cinnamons, pitanga, Oregon yampahs, red bell peppers, and durians. This could make quinolinic acid a potential biomarker for the consumption of these foods.
Structure
Data?1628564083
Synonyms
ValueSource
2,3-Pyridinedicarboxylic acidChEBI
Pyridine-2,3-dicarboxylateChEBI
2,3-PyridinedicarboxylateGenerator
Pyridine-2,3-dicarboxylic acidGenerator
QuinolinateGenerator
3,4-Pyridinedicarboxylic acidHMDB
Pyridin-2,3-dicarbonsaeureHMDB
Pyridine-2,3-carboxylateHMDB
Quinolinic acidHMDB
Chemical FormulaC7H5NO4
Average Mass167.1189 Da
Monoisotopic Mass167.02186 Da
IUPAC Namepyridine-2,3-dicarboxylic acid
Traditional Namequinolinic acid
CAS Registry Number89-00-9
SMILES
[H]OC(=O)C1=NC([H])=C([H])C([H])=C1C(=O)O[H]
InChI Identifier
InChI=1S/C7H5NO4/c9-6(10)4-2-1-3-8-5(4)7(11)12/h1-3H,(H,9,10)(H,11,12)
InChI KeyGJAWHXHKYYXBSV-UHFFFAOYSA-N
Experimental Spectra
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, simulated)Ahselim2023-05-18View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, experimental)Ahselim2023-05-18View Spectrum
HSQC NMR[1H, 13C] NMR Spectrum (2D, 600 MHz, CD3OD, experimental)bgnzk@missouri.eduMU Metabolomics Center, University of Missouri, Columbia. MO, USADr. Bharat Goel2024-01-26View Spectrum
HMBC NMR[1H, 13C] NMR Spectrum (2D, 600 MHz, CD3OD, experimental)bgnzk@missouri.eduMU Metabolomics Center, University of Missouri, Columbia. MO, USADr. Bharat Goel2024-01-26View Spectrum
COSY NMR[1H, 1H] NMR Spectrum (2D, 600 MHz, CD3OD, experimental)bgnzk@missouri.eduMU Metabolomics Center, University of Missouri, Columbia. MO, USADr. Bharat Goel2024-01-26View Spectrum
1D NMR[13C, ] NMR Spectrum (2D, 201 MHz, CD3OD, experimental)bgnzk@missouri.eduMU Metabolomics Center, University of Missouri, Columbia. MO, USADr. Bharat Goel2024-01-26View Spectrum
1D NMR[1H, ] NMR Spectrum (2D, 600 MHz, CD3OD, experimental)bgnzk@missouri.eduMU Metabolomics Center, University of Missouri, Columbia. MO, USADr. Bharat Goel2024-01-26View Spectrum
1D NMR1H NMR Spectrum (1D, 600.133705802 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201.216488466 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
2D NMR[1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Anas platyrhynchosFooDB
AnatidaeFooDB
Anser anserFooDB
Arabidopsis thalianaKNApSAcK Database
Bison bisonFooDB
Bos taurusFooDB
Bos taurus X Bison bisonFooDB
Bubalus bubalisFooDB
Capra aegagrus hircusFooDB
CervidaeFooDB
Cervus canadensisFooDB
ColumbaFooDB
ColumbidaeFooDB
Corydalis yanhusuoKNApSAcK Database
Dromaius novaehollandiaeFooDB
Equus caballusFooDB
Gallus gallusFooDB
Lagopus mutaFooDB
LeporidaeFooDB
Lepus timidusFooDB
Melanitta fuscaFooDB
Meleagris gallopavoFooDB
Mus musculusLOTUS Database
Nicotiana tabacumKNApSAcK Database
Numida meleagrisFooDB
OdocoileusFooDB
OryctolagusFooDB
Ovis ariesFooDB
PhasianidaeFooDB
Phasianus colchicusFooDB
Struthio camelusFooDB
Sus scrofaFooDB
Sus scrofa domesticaFooDB
Species Where Detected
Species NameSourceReference
Escherichia coliKNApSAcK Database
Homo sapiens (Urine)KNApSAcK Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as pyridinecarboxylic acids. Pyridinecarboxylic acids are compounds containing a pyridine ring bearing a carboxylic acid group.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassPyridines and derivatives
Sub ClassPyridinecarboxylic acids and derivatives
Direct ParentPyridinecarboxylic acids
Alternative Parents
Substituents
  • Pyridine carboxylic acid
  • Dicarboxylic acid or derivatives
  • Heteroaromatic compound
  • Azacycle
  • Carboxylic acid
  • Carboxylic acid derivative
  • Organic nitrogen compound
  • Organic oxygen compound
  • Organopnictogen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Organonitrogen compound
  • Aromatic heteromonocyclic compound
Molecular FrameworkAromatic heteromonocyclic compounds
External Descriptors
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point190 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility11 mg/mLNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility4.07 g/LALOGPS
logP0.15ALOGPS
logP-1ChemAxon
logS-1.6ALOGPS
pKa (Strongest Acidic)0.31ChemAxon
pKa (Strongest Basic)5.74ChemAxon
Physiological Charge-2ChemAxon
Hydrogen Acceptor Count5ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area87.49 ŲChemAxon
Rotatable Bond Count2ChemAxon
Refractivity38.04 m³·mol⁻¹ChemAxon
Polarizability14.34 ųChemAxon
Number of Rings1ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDHMDB0000232
DrugBank IDDB01796
Phenol Explorer Compound IDNot Available
FoodDB IDFDB031142
KNApSAcK IDC00007381
Chemspider ID1037
KEGG Compound IDC03722
BioCyc IDQUINOLINATE
BiGG IDNot Available
Wikipedia LinkQuinolinic_acid
METLIN IDNot Available
PubChem Compound1066
PDB IDNot Available
ChEBI ID16675
Good Scents IDNot Available
References
General References
  1. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. doi: 10.1038/nature07762. [PubMed:19212411 ]
  2. Shoemaker JD, Elliott WH: Automated screening of urine samples for carbohydrates, organic and amino acids after treatment with urease. J Chromatogr. 1991 Jan 2;562(1-2):125-38. [PubMed:2026685 ]
  3. Guneral F, Bachmann C: Age-related reference values for urinary organic acids in a healthy Turkish pediatric population. Clin Chem. 1994 Jun;40(6):862-6. [PubMed:8087979 ]
  4. Medana IM, Hien TT, Day NP, Phu NH, Mai NT, Chu'ong LV, Chau TT, Taylor A, Salahifar H, Stocker R, Smythe G, Turner GD, Farrar J, White NJ, Hunt NH: The clinical significance of cerebrospinal fluid levels of kynurenine pathway metabolites and lactate in severe malaria. J Infect Dis. 2002 Mar 1;185(5):650-6. Epub 2002 Feb 14. [PubMed:11865422 ]
  5. Smythe GA, Poljak A, Bustamante S, Braga O, Maxwell A, Grant R, Sachdev P: ECNI GC-MS analysis of picolinic and quinolinic acids and their amides in human plasma, CSF, and brain tissue. Adv Exp Med Biol. 2003;527:705-12. [PubMed:15206793 ]
  6. Medana IM, Day NP, Salahifar-Sabet H, Stocker R, Smythe G, Bwanaisa L, Njobvu A, Kayira K, Turner GD, Taylor TE, Hunt NH: Metabolites of the kynurenine pathway of tryptophan metabolism in the cerebrospinal fluid of Malawian children with malaria. J Infect Dis. 2003 Sep 15;188(6):844-9. Epub 2003 Sep 9. [PubMed:12964115 ]
  7. Heyes MP, Achim CL, Wiley CA, Major EO, Saito K, Markey SP: Human microglia convert l-tryptophan into the neurotoxin quinolinic acid. Biochem J. 1996 Dec 1;320 ( Pt 2):595-7. [PubMed:8973572 ]
  8. Heyes MP, Saito K, Lackner A, Wiley CA, Achim CL, Markey SP: Sources of the neurotoxin quinolinic acid in the brain of HIV-1-infected patients and retrovirus-infected macaques. FASEB J. 1998 Jul;12(10):881-96. [PubMed:9657528 ]
  9. Heyes MP, Saito K, Milstien S, Schiff SJ: Quinolinic acid in tumors, hemorrhage and bacterial infections of the central nervous system in children. J Neurol Sci. 1995 Nov;133(1-2):112-8. [PubMed:8583213 ]
  10. Wolfensberger M, Amsler U, Cuenod M, Foster AC, Whetsell WO Jr, Schwarcz R: Identification of quinolinic acid in rat and human brain tissue. Neurosci Lett. 1983 Nov 11;41(3):247-52. [PubMed:6664615 ]
  11. Kurup RK, Kurup PA: Hypothalamic digoxin, hemispheric chemical dominance, and Alzheimer's disease. Int J Neurosci. 2003 Mar;113(3):361-81. [PubMed:12803139 ]
  12. Heyes MP, Wyler AR, Devinsky O, Yergey JA, Markey SP, Nadi NS: Quinolinic acid concentrations in brain and cerebrospinal fluid of patients with intractable complex partial seizures. Epilepsia. 1990 Mar-Apr;31(2):172-7. [PubMed:1690639 ]
  13. Kurup RK, Kurup PA: Central role of hypothalamic digoxin in conscious perception, neuroimmunoendocrine integration, and coordination of cellular function: relation to hemispheric dominance. Int J Neurosci. 2002 Jun;112(6):705-39. [PubMed:12325312 ]
  14. Moroni F, Lombardi G, Carla V, Lal S, Etienne P, Nair NP: Increase in the content of quinolinic acid in cerebrospinal fluid and frontal cortex of patients with hepatic failure. J Neurochem. 1986 Dec;47(6):1667-71. [PubMed:2430055 ]
  15. Basile AS, Saito K, al-Mardini H, Record CO, Hughes RD, Harrison P, Williams R, Li Y, Heyes MP: The relationship between plasma and brain quinolinic acid levels and the severity of hepatic encephalopathy. Gastroenterology. 1995 Mar;108(3):818-23. [PubMed:7875484 ]
  16. Power C, Johnson RT: HIV-1 associated dementia: clinical features and pathogenesis. Can J Neurol Sci. 1995 May;22(2):92-100. [PubMed:7627922 ]
  17. Ellison DW, Beal MF, Mazurek MF, Malloy JR, Bird ED, Martin JB: Amino acid neurotransmitter abnormalities in Huntington's disease and the quinolinic acid animal model of Huntington's disease. Brain. 1987 Dec;110 ( Pt 6):1657-73. [PubMed:2892568 ]
  18. Saito K, Markey SP, Heyes MP: Effects of immune activation on quinolinic acid and neuroactive kynurenines in the mouse. Neuroscience. 1992 Nov;51(1):25-39. [PubMed:1465184 ]
  19. Heyes MP, Rubinow D, Lane C, Markey SP: Cerebrospinal fluid quinolinic acid concentrations are increased in acquired immune deficiency syndrome. Ann Neurol. 1989 Aug;26(2):275-7. [PubMed:2528321 ]
  20. Heyes MP, Ellis RJ, Ryan L, Childers ME, Grant I, Wolfson T, Archibald S, Jernigan TL: Elevated cerebrospinal fluid quinolinic acid levels are associated with region-specific cerebral volume loss in HIV infection. Brain. 2001 May;124(Pt 5):1033-42. [PubMed:11335705 ]
  21. Heyes MP, Saito K, Crowley JS, Davis LE, Demitrack MA, Der M, Dilling LA, Elia J, Kruesi MJ, Lackner A, et al.: Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain. 1992 Oct;115 ( Pt 5):1249-73. [PubMed:1422788 ]
  22. Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ: Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci. 2012 Jul;13(7):465-77. doi: 10.1038/nrn3257. [PubMed:22678511 ]
  23. Guillemin GJ: Quinolinic acid, the inescapable neurotoxin. FEBS J. 2012 Apr;279(8):1356-65. doi: 10.1111/j.1742-4658.2012.08485.x. Epub 2012 Mar 27. [PubMed:22248144 ]
  24. Valle M, Price RW, Nilsson A, Heyes M, Verotta D: CSF quinolinic acid levels are determined by local HIV infection: cross-sectional analysis and modelling of dynamics following antiretroviral therapy. Brain. 2004 May;127(Pt 5):1047-60. doi: 10.1093/brain/awh130. Epub 2004 Mar 10. [PubMed:15013955 ]
  25. Stone TW: Endogenous neurotoxins from tryptophan. Toxicon. 2001 Jan;39(1):61-73. doi: 10.1016/s0041-0101(00)00156-2. [PubMed:10936623 ]
  26. Liu H, Zhang X, Shi P, Yuan J, Jia Q, Pi C, Chen T, Xiong L, Chen J, Tang J, Yue R, Liu Z, Shen H, Zuo Y, Wei Y, Zhao L: alpha7 Nicotinic acetylcholine receptor: a key receptor in the cholinergic anti-inflammatory pathway exerting an antidepressant effect. J Neuroinflammation. 2023 Mar 27;20(1):84. doi: 10.1186/s12974-023-02768-z. [PubMed:36973813 ]