Record Information |
---|
Version | 2.0 |
---|
Created at | 2005-11-16 15:48:42 UTC |
---|
Updated at | 2020-11-24 22:20:07 UTC |
---|
NP-MRD ID | NP0001013 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | Homocysteine |
---|
Description | Homocysteine is a sulfur-containing amino acid that arises during methionine metabolism. Although its concentration in plasma is only about 10 micromolar (uM), even moderate hyperhomocysteinemia is associated with increased incidence of cardiovascular disease and Alzheimer's disease. Elevations in plasma homocysteine are commonly found as a result of vitamin deficiencies, polymorphisms of enzymes of methionine metabolism, and renal disease. Pyridoxal, folic acid, riboflavin, and Vitamin B(12) are all required for methionine metabolism, and deficiency of each of these vitamins result in elevated plasma homocysteine. A polymorphism of methylenetetrahydrofolate reductase (C677T), which is quite common in most populations with a homozygosity rate of 10-15 %, is associated with moderate hyperhomocysteinemia, especially in the context of marginal folate intake. Plasma homocysteine is inversely related to plasma creatinine in patients with renal disease. This is due to an impairment in homocysteine removal in renal disease. The role of these factors, and of modifiable lifestyle factors, in affecting methionine metabolism and in determining plasma homocysteine levels is discussed. Homocysteine is an independent cardiovascular disease (CVD) risk factor modifiable by nutrition and possibly exercise. Homocysteine was first identified as an important biological compound in 1932 and linked with human disease in 1962 when elevated urinary homocysteine levels were found in children with mental retardation. This condition, called homocysteinuria, was later associated with premature occlusive CVD, even in children. These observations led to research investigating the relationship of elevated homocysteine levels and CVD in a wide variety of populations including middle age and elderly men and women with and without traditional risk factors for CVD (PMID 17136938 , 15630149 ). Moreover, homocysteine is found to be associated with cystathionine beta-synthase deficiency, cystathioninuria, methylenetetrahydrofolate reductase deficiency, and sulfite oxidase deficiency, which are inborn errors of metabolism. |
---|
Structure | InChI=1S/C4H9NO2S/c5-3(1-2-8)4(6)7/h3,8H,1-2,5H2,(H,6,7)/t3-/m0/s1 |
---|
Synonyms | Value | Source |
---|
Hcy | ChEBI | L-2-Amino-4-mercaptobutyric acid | ChEBI | L-2-Amino-4-mercaptobutyrate | Generator | 2-Amino-4-mercaptobutyric acid | HMDB | Homocysteine, L isomer | HMDB | L-Isomer homocysteine | HMDB | 2 Amino 4 mercaptobutyric acid | HMDB | Homocysteine, L-isomer | HMDB | (S)-2-Amino-4-mercapto-butanoate | HMDB | (S)-2-Amino-4-mercapto-butanoic acid | HMDB | (S)-2-Amino-4-mercaptobutanoic acid | HMDB | (S)-Homocysteine | HMDB | 2-Amino-4-mercapto-DL-butyrate | HMDB | 2-Amino-4-mercapto-DL-butyric acid | HMDB | 2-Amino-4-mercapto-L-butyric acid | HMDB | 2-Amino-4-mercapto-butanoate | HMDB | 2-Amino-4-mercapto-butanoic acid | HMDB | 2-Amino-4-mercapto-butyric acid | HMDB | 2-Amino-4-sulfanylbutanoate | HMDB | 2-Amino-4-sulfanylbutanoic acid | HMDB | D,L-Homocysteine | HMDB | DL-2-Amino-4-mercapto-butyric acid | HMDB | DL-2-Amino-4-mercaptobutyric acid | HMDB | DL-Homocysteine | HMDB | Homo-cys | HMDB | L-2-Amino-4-mercapto-butyric acid | HMDB | L-Homocysteine | HMDB | 2-Amino-4-mercapto-butyrate | HMDB | Homocysteine | MeSH, KEGG |
|
---|
Chemical Formula | C4H9NO2S |
---|
Average Mass | 135.1850 Da |
---|
Monoisotopic Mass | 135.03540 Da |
---|
IUPAC Name | (2S)-2-amino-4-sulfanylbutanoic acid |
---|
Traditional Name | L-homocysteine |
---|
CAS Registry Number | 454-29-5 |
---|
SMILES | N[C@@H](CCS)C(O)=O |
---|
InChI Identifier | InChI=1S/C4H9NO2S/c5-3(1-2-8)4(6)7/h3,8H,1-2,5H2,(H,6,7)/t3-/m0/s1 |
---|
InChI Key | FFFHZYDWPBMWHY-VKHMYHEASA-N |
---|
Experimental Spectra |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Predicted Spectra |
---|
|
| Not Available | Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Species Where Detected | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as l-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organic acids and derivatives |
---|
Class | Carboxylic acids and derivatives |
---|
Sub Class | Amino acids, peptides, and analogues |
---|
Direct Parent | L-alpha-amino acids |
---|
Alternative Parents | |
---|
Substituents | - L-alpha-amino acid
- Thia fatty acid
- Fatty acid
- Fatty acyl
- Amino acid
- Alkylthiol
- Carboxylic acid
- Monocarboxylic acid or derivatives
- Organic nitrogen compound
- Hydrocarbon derivative
- Organic oxide
- Primary amine
- Organosulfur compound
- Organooxygen compound
- Organonitrogen compound
- Organopnictogen compound
- Primary aliphatic amine
- Organic oxygen compound
- Carbonyl group
- Amine
- Aliphatic acyclic compound
|
---|
Molecular Framework | Aliphatic acyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | 232 - 233 °C | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | 148 mg/mL | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Selley ML, Close DR, Stern SE: The effect of increased concentrations of homocysteine on the concentration of (E)-4-hydroxy-2-nonenal in the plasma and cerebrospinal fluid of patients with Alzheimer's disease. Neurobiol Aging. 2002 May-Jun;23(3):383-8. [PubMed:11959400 ]
- Yu CK, Lakasing L, Papageorghiou AT, Spencer K, Nicolaides KH: Uterine artery Doppler and mid-trimester maternal plasma homocysteine in subsequent pre-eclampsia. J Matern Fetal Neonatal Med. 2004 Aug;16(2):134-9. [PubMed:15512726 ]
- Giladi N, Mordechovich M, Gruendlinger L, Shabtai H, Merims D, Naor S, Baltadzhieva R, Hausdorff JM, Gur AY, Bornstein NM: "Brain Screen": A self-referral, screening program for strokes, falls and dementia risk factors. J Neurol. 2006 Mar;253(3):307-15. Epub 2005 Oct 10. [PubMed:16208527 ]
- Terzolo M, Allasino B, Bosio S, Brusa E, Daffara F, Ventura M, Aroasio E, Sacchetto G, Reimondo G, Angeli A, Camaschella C: Hyperhomocysteinemia in patients with Cushing's syndrome. J Clin Endocrinol Metab. 2004 Aug;89(8):3745-51. [PubMed:15292300 ]
- Laxdal E, Eide GE, Amundsen SR, Dregelid EB, Pedersen G, Jonung T, Aune S: Homocysteine levels, haemostatic risk factors and restenosis after carotid thrombendarterectomy. Eur J Vasc Endovasc Surg. 2004 Sep;28(3):323-8. [PubMed:15288638 ]
- Akoglu B, Wondra K, Caspary WF, Faust D: Determinants of fasting total serum homocysteine levels in liver transplant recipients. Exp Clin Transplant. 2006 Jun;4(1):462-6. [PubMed:16827644 ]
- Krantz JS, Mack WJ, Hodis HN, Liu CR, Liu CH, Kaufman FR: Early onset of subclinical atherosclerosis in young persons with type 1 diabetes. J Pediatr. 2004 Oct;145(4):452-7. [PubMed:15480366 ]
- Serot JM, Barbe F, Arning E, Bottiglieri T, Franck P, Montagne P, Nicolas JP: Homocysteine and methylmalonic acid concentrations in cerebrospinal fluid: relation with age and Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2005 Nov;76(11):1585-7. [PubMed:16227558 ]
- Hershcovici T, Schechner V, Orlin J, Harell D, Beigel Y: Effect of different LDL-apheresis methods on parameters involved in atherosclerosis. J Clin Apher. 2004;19(2):90-7. [PubMed:15274202 ]
- Muller T, Renger K, Kuhn W: Levodopa-associated increase of homocysteine levels and sural axonal neurodegeneration. Arch Neurol. 2004 May;61(5):657-60. [PubMed:15148140 ]
- Eskes TK: Homocysteine and human reproduction. Clin Exp Obstet Gynecol. 2000;27(3-4):157-67. [PubMed:11214939 ]
- Winkelmayer WC, Kramar R, Curhan GC, Chandraker A, Endler G, Fodinger M, Horl WH, Sunder-Plassmann G: Fasting plasma total homocysteine levels and mortality and allograft loss in kidney transplant recipients: a prospective study. J Am Soc Nephrol. 2005 Jan;16(1):255-60. Epub 2004 Nov 24. [PubMed:15563562 ]
- Park BH, Kim YJ, Park JS, Lee HY, Ha EH, Min JW, Park HS: [Folate and homocysteine levels during pregnancy affect DNA methylation in human placenta]. J Prev Med Public Health. 2005 Nov;38(4):437-42. [PubMed:16358830 ]
- Hossain GS, van Thienen JV, Werstuck GH, Zhou J, Sood SK, Dickhout JG, de Koning AB, Tang D, Wu D, Falk E, Poddar R, Jacobsen DW, Zhang K, Kaufman RJ, Austin RC: TDAG51 is induced by homocysteine, promotes detachment-mediated programmed cell death, and contributes to the cevelopment of atherosclerosis in hyperhomocysteinemia. J Biol Chem. 2003 Aug 8;278(32):30317-27. Epub 2003 May 8. [PubMed:12738777 ]
- Schafer SA, Mussig K, Stefan N, Haring HU, Fritsche A, Balletshofer BM: Plasma homocysteine concentrations in young individuals at increased risk of type 2 diabetes are associated with subtle differences in glomerular filtration rate but not with insulin resistance. Exp Clin Endocrinol Diabetes. 2006 Jun;114(6):306-9. [PubMed:16868889 ]
- Tchantchou F: Homocysteine metabolism and various consequences of folate deficiency. J Alzheimers Dis. 2006 Aug;9(4):421-7. [PubMed:16917151 ]
- Siroka R, Trefil L, Rajdl D, Racek J, Rusnakova H, Cibulka R, Eiselt J, Filipovsky J: Asymmetric dimethylarginine, homocysteine and renal function--is there a relation? Clin Chem Lab Med. 2005;43(10):1147-50. [PubMed:16197312 ]
- Onalan R, Onalan G, Gunenc Z, Karabulut E: Combining 2nd-trimester maternal serum homocysteine levels and uterine artery Doppler for prediction of preeclampsia and isolated intrauterine growth restriction. Gynecol Obstet Invest. 2006;61(3):142-8. Epub 2005 Dec 20. [PubMed:16374017 ]
- Robinson G, Narasimhan S, Weatherall M, Beasley R: Raised plasma homocysteine levels in alcoholism: increasing the risk of heart disease and dementia? N Z Med J. 2005 Jun 3;118(1216):U1490. [PubMed:15937525 ]
- Gulsen M, Yesilova Z, Bagci S, Uygun A, Ozcan A, Ercin CN, Erdil A, Sanisoglu SY, Cakir E, Ates Y, Erbil MK, Karaeren N, Dagalp K: Elevated plasma homocysteine concentrations as a predictor of steatohepatitis in patients with non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2005 Sep;20(9):1448-55. [PubMed:16105135 ]
- Joubert LM, Manore MM: Exercise, nutrition, and homocysteine. Int J Sport Nutr Exerc Metab. 2006 Aug;16(4):341-61. [PubMed:17136938 ]
- Brosnan JT: Homocysteine and cardiovascular disease: interactions between nutrition, genetics and lifestyle. Can J Appl Physiol. 2004 Dec;29(6):773-80. [PubMed:15630149 ]
|
---|