Record Information |
---|
Version | 2.0 |
---|
Created at | 2006-02-22 10:50:16 UTC |
---|
Updated at | 2021-10-07 20:40:23 UTC |
---|
NP-MRD ID | NP0001009 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | p-Cresol |
---|
Description | Para-Cresol, also 4-methylphenol, is an organic compound with the formula CH3C6H4(OH). P-cresol is a cresol that consists of toluene substituted by a hydroxy group at position 4. It is a metabolite of aromatic amino acid metabolism produced by intestinal microflora in humans and animals. It has a role as a uremic toxin, a human metabolite and an Escherichia coli metabolite. It is a colourless solid that is widely used intermediate in the production of other chemicals. It is a derivative of phenol and is an isomer of o-cresol and m-cresol. It is a partially lipophilic moiety which strongly binds to plasma protein (close to 100%) under normal conditions. P-Cresol is metabolized through conjugation, mainly sulphation and glucuronization, but removal of the unconjugated p-cresol is, at least in part, via the urine. Therefore it is not surprising that this compound, together with several other phenoles, is retained when the kidneys fail. P-Cresol is an end-product of protein breakdown, and an increase of the nutritional protein load in healthy individuals results in enhanced generation and urinary excretion. The serum p-cresol concentration in uremic patients can be decreased by changing to a low-protein diet. P-Cresol is one of the metabolites of the amino acid tyrosine, and to a certain extent also of phenylalanine, which are converted to 4-hydroxyphenylacetic acid by intestinal bacteria, before being decarboxylated to p-cresol (putrefaction). The main contributing bacteria are aerobes (mainly enterobacteria), but to a certain extent also anaerobes play a role (mainly Clostridium perfringens). In uremia, modifications in the intestinal flora result in the specific overgrowth of bacteria that are specific p-cresol producers. The administration of antibiotics reduces urinary excretion of p-cresol, as a result of the liquidation of the producing bacteria. Environmental factors might also contribute. The liver cytochrome P450 metabolizes toluene to benzyl alcohol, but also to o-cresol and p-cresol. Toluene is not only used industrially, but it is also the most widely abusively inhaled solvent. Furthermore, p-cresol is a metabolite of menthofuran, one of the metabolites of R-(+)-pulegone, which is found in extracts from the plants Mentha pulegium and Hedeoma pulegioides, commonly known as pennyroyal oil and pennyroyal tea. These extracts are popular as unconventional herbal therapeutic agents and are applied as abortiva, diaphoretics, emmenagogues, and psychedelic drugs. Pennyroyal oil is extensively used for its pleasant mint-like smell in the flavoring industry. The toxicity of pennyroyal oil and menthofuran is well known. Another compound used in traditional medicine, especially in Japan, which is a precursor of p-cresol is wood tar creosote. P-Cresol has been reported to affect several biochemical, biological and physiological functions: (I) it diminishes the oxygen uptake of rat cerebral cortex slices; (ii) it increases the free active drug concentration of warfarin and diazepam; (iii) it has been related to growth retardation in the weanling pig; (iv) it alters cell membrane permeability, at least in bacteria; (v) it induces LDH leakage from rat liver slices; (vi) it induces susceptibility to auditive epileptic crises; and (vii) it blocks cell K+ channels. (PMID: 10570076 ). P-Cresol is a uremic toxin that is at least partially removed by peritoneal dialysis in haemodialysis patients, and has been involved in the progression of renal failure (PMID: 11169029 ). At concentrations encountered during uremia, p-cresol inhibits phagocyte function and decreases leukocyte adhesion to cytokine-stimulated endothelial cells. (PMID: 14681860 ). P-Cresol can be found in Bacteroides, Bifidobacterium, Clostridium, Enterobacter and Lactobacillus (PMID: 2394806 ; PMID: 30208103 ). As a volatile organic compound, it has been identified as a fecal biomarker of Clostridium difficile infection (PMID: 30986230 ). |
---|
Structure | InChI=1S/C7H8O/c1-6-2-4-7(8)5-3-6/h2-5,8H,1H3 |
---|
Synonyms | Value | Source |
---|
1-Hydroxy-4-methylbenzene | ChEBI | 4-Cresol | ChEBI | 4-Hydroxytoluene | ChEBI | 4-Methylphenol | ChEBI | p-Kresol | ChEBI | p-Methylphenol | ChEBI | p-Tolyl alcohol | ChEBI | Paracresol | ChEBI | 1-Methyl-4-hydroxybenzene | HMDB | 4-(Pentafluorosulfanyl)phenol | HMDB | 4-Methyl phenol | HMDB | 4-Methyl-phenol | HMDB | p-Cresylate | HMDB | p-Cresylic acid | HMDB | p-Hydroxytoluene | HMDB | p-Methyl phenol | HMDB | p-Methylhydroxybenzene | HMDB | p-Oxytoluene | HMDB | p-Toluol | HMDB | Paramethyl phenol | HMDB | 4-Cresol, potassium salt | HMDB | m-Cresol | HMDB | 4-Cresol, aluminum salt | HMDB | 4-Cresol, sodium salt | HMDB | Para-cresol | HMDB |
|
---|
Chemical Formula | C7H8O |
---|
Average Mass | 108.1378 Da |
---|
Monoisotopic Mass | 108.05751 Da |
---|
IUPAC Name | 4-methylphenol |
---|
Traditional Name | P-cresol |
---|
CAS Registry Number | 106-44-5 |
---|
SMILES | CC1=CC=C(O)C=C1 |
---|
InChI Identifier | InChI=1S/C7H8O/c1-6-2-4-7(8)5-3-6/h2-5,8H,1H3 |
---|
InChI Key | IWDCLRJOBJJRNH-UHFFFAOYSA-N |
---|
Experimental Spectra |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Predicted Spectra |
---|
|
| Not Available | Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Species Where Detected | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as para cresols. Para cresols are compounds containing a para cresol moiety, which consists of a benzene ring bearing one hydroxyl group at ring positions 1 and 4. |
---|
Kingdom | Organic compounds |
---|
Super Class | Benzenoids |
---|
Class | Phenols |
---|
Sub Class | Cresols |
---|
Direct Parent | Para cresols |
---|
Alternative Parents | |
---|
Substituents | - P-cresol
- 1-hydroxy-2-unsubstituted benzenoid
- Toluene
- Monocyclic benzene moiety
- Organic oxygen compound
- Hydrocarbon derivative
- Organooxygen compound
- Aromatic homomonocyclic compound
|
---|
Molecular Framework | Aromatic homomonocyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | 35.5 °C | Not Available | Boiling Point | 201.80 to 202.00 °C. @ 760.00 mm Hg | The Good Scents Company Information System | Water Solubility | 21.5 mg/mL at 25 °C | Not Available | LogP | 1.94 | Hansch CH, Leo A and Hoekman DH. "Exploring QSAR: Hydrophobic, Electronic, and Steric Constraints. Volume 1" ACS Publications (1995). |
|
---|
Predicted Properties | |
---|
General References | - Geyer H, Scheunert I, Korte F: Bioconcentration potential of organic environmental chemicals in humans. Regul Toxicol Pharmacol. 1986 Dec;6(4):313-47. [PubMed:3101145 ]
- Buhlmann P, Hayakawa M, Ohshiro T, Amemiya S, Umezawa Y: Influence of natural, electrically neutral lipids on the potentiometric responses of cation-selective polymeric membrane electrodes. Anal Chem. 2001 Jul 15;73(14):3199-205. [PubMed:11476216 ]
- Ogata N, Shibata T: Binding of alkyl- and alkoxy-substituted simple phenolic compounds to human serum proteins. Res Commun Mol Pathol Pharmacol. 2000;107(1-2):167-73. [PubMed:11334365 ]
- Cork A, Park KC: Identification of electrophysiologically-active compounds for the malaria mosquito, Anopheles gambiae, in human sweat extracts. Med Vet Entomol. 1996 Jul;10(3):269-76. [PubMed:8887339 ]
- Bone E, Tamm A, Hill M: The production of urinary phenols by gut bacteria and their possible role in the causation of large bowel cancer. Am J Clin Nutr. 1976 Dec;29(12):1448-54. [PubMed:826152 ]
- Akasaka K, Ohrui H, Meguro H, Tamura M: Determination of triacylglycerol and cholesterol ester hydroperoxides in human plasma by high-performance liquid chromatography with fluorometric postcolumn detection. J Chromatogr. 1993 Aug 11;617(2):205-11. [PubMed:8408385 ]
- Gostner A, Blaut M, Schaffer V, Kozianowski G, Theis S, Klingeberg M, Dombrowski Y, Martin D, Ehrhardt S, Taras D, Schwiertz A, Kleessen B, Luhrs H, Schauber J, Dorbath D, Menzel T, Scheppach W: Effect of isomalt consumption on faecal microflora and colonic metabolism in healthy volunteers. Br J Nutr. 2006 Jan;95(1):40-50. [PubMed:16441915 ]
- Letelier ME, Rodriguez E, Wallace A, Lorca M, Repetto Y, Morello A, Aldunate J: Trypanosoma cruzi: a possible control of transfusion-induced Chagas' disease by phenolic antioxidants. Exp Parasitol. 1990 Nov;71(4):357-63. [PubMed:2121515 ]
- Nishiyama T, Ohnishi J, Hashiguchi Y: Fused heterocyclic antioxidants: antioxidative activities of hydrocoumarins in a homogeneous solution. Biosci Biotechnol Biochem. 2001 May;65(5):1127-33. [PubMed:11440127 ]
- Dills RL, Bellamy GM, Kalman DA: Quantitation of o-, m- and p-cresol and deuterated analogs in human urine by gas chromatography with electron capture detection. J Chromatogr B Biomed Sci Appl. 1997 Dec 5;703(1-2):105-13. [PubMed:9448067 ]
- Bammens B, Verbeke K, Vanrenterghem Y, Evenepoel P: Evidence for impaired assimilation of protein in chronic renal failure. Kidney Int. 2003 Dec;64(6):2196-203. [PubMed:14633143 ]
- Brunet P, Dou L, Cerini C, Berland Y: Protein-bound uremic retention solutes. Adv Ren Replace Ther. 2003 Oct;10(4):310-20. [PubMed:14681860 ]
- Vanholder R, De Smet R, Lesaffer G: p-cresol: a toxin revealing many neglected but relevant aspects of uraemic toxicity. Nephrol Dial Transplant. 1999 Dec;14(12):2813-5. [PubMed:10570076 ]
- Lameire N, Vanholder R, De Smet R: Uremic toxins and peritoneal dialysis. Kidney Int Suppl. 2001 Feb;78:S292-7. doi: 10.1046/j.1523-1755.2001.59780292.x. [PubMed:11169029 ]
- Sivsammye G, Sims HV: Presumptive identification of Clostridium difficile by detection of p-cresol in prepared peptone yeast glucose broth supplemented with p-hydroxyphenylacetic acid. J Clin Microbiol. 1990 Aug;28(8):1851-3. doi: 10.1128/jcm.28.8.1851-1853.1990. [PubMed:2394806 ]
- Passmore IJ, Letertre MPM, Preston MD, Bianconi I, Harrison MA, Nasher F, Kaur H, Hong HA, Baines SD, Cutting SM, Swann JR, Wren BW, Dawson LF: Para-cresol production by Clostridium difficile affects microbial diversity and membrane integrity of Gram-negative bacteria. PLoS Pathog. 2018 Sep 12;14(9):e1007191. doi: 10.1371/journal.ppat.1007191. eCollection 2018 Sep. [PubMed:30208103 ]
- Patel M, Fowler D, Sizer J, Walton C: Faecal volatile biomarkers of Clostridium difficile infection. PLoS One. 2019 Apr 15;14(4):e0215256. doi: 10.1371/journal.pone.0215256. eCollection 2019. [PubMed:30986230 ]
|
---|