Record Information |
---|
Version | 2.0 |
---|
Created at | 2005-11-16 15:48:42 UTC |
---|
Updated at | 2022-01-12 19:57:31 UTC |
---|
NP-MRD ID | NP0000973 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | Cytosine |
---|
Description | Cytosine, also known as C, belongs to the class of organic compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. Cytosine is also classified as a pyrimidine derivative, with a heterocyclic aromatic ring and two substituents attached (an amine group at position 4 and a keto group at position 2). Cytosine is one of the four main bases found in DNA and RNA, along with adenine, guanine, and thymine (uracil in RNA). The nucleoside of cytosine is cytidine. In Watson-Crick base pairing, cytosine forms three hydrogen bonds with guanine. Cytosine was discovered and named by Albrecht Kossel and Albert Neumann in 1894 when it was hydrolyzed from calf thymus tissues. Cytosine exists in all living species, ranging from bacteria to plants to humans. Within cells, cytosine can undergo several enzymatic reactions. It can be methylated into 5-methylcytosine by an enzyme called DNA methyltransferase (DNMT) or be methylated and hydroxylated to make 5-hydroxymethylcytosine. The DNA methyltransferase (DNMT) family of enzymes transfer a methyl group from S-adenosyl-l-methionine (SAM) to the 5’ carbon of cytosine in a molecule of DNA. High levels of cytosine can be found in the urine of individuals with severe combined immunodeficiency syndrome (SCID). Cytosine concentrations as high as (23-160 mmol/mol creatinine) were detected in SCID patients compared to normal levels of <2 mmol/mol creatinine (PMID: 262183 ). |
---|
Structure | InChI=1S/C4H5N3O/c5-3-1-2-6-4(8)7-3/h1-2H,(H3,5,6,7,8) |
---|
Synonyms | Value | Source |
---|
4-Amino-2(1H)-pyrimidinone | ChEBI | 4-Amino-2-hydroxypyrimidine | ChEBI | C | ChEBI | Cyt | ChEBI | Cytosin | ChEBI | Zytosin | ChEBI | 4-Amino-2-oxo-1,2-dihydropyrimidine | HMDB | 4-Aminouracil | HMDB | Cytosinimine | HMDB |
|
---|
Chemical Formula | C4H5N3O |
---|
Average Mass | 111.1020 Da |
---|
Monoisotopic Mass | 111.04326 Da |
---|
IUPAC Name | 6-amino-1,2-dihydropyrimidin-2-one |
---|
Traditional Name | 2(1H)-pyrimidinone, 6-amino- |
---|
CAS Registry Number | 71-30-7 |
---|
SMILES | NC1=CC=NC(=O)N1 |
---|
InChI Identifier | InChI=1S/C4H5N3O/c5-3-1-2-6-4(8)7-3/h1-2H,(H3,5,6,7,8) |
---|
InChI Key | OPTASPLRGRRNAP-UHFFFAOYSA-N |
---|
Experimental Spectra |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, simulated) | Ahselim | | | 2022-01-12 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Predicted Spectra |
---|
|
| Not Available | Chemical Shift Submissions |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 400 MHz, H2O, simulated) | varshavi.d26@gmail.com | Not Available | Not Available | 2021-08-03 | View Spectrum |
| Species |
---|
Species of Origin | |
---|
Species Where Detected | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organoheterocyclic compounds |
---|
Class | Diazines |
---|
Sub Class | Pyrimidines and pyrimidine derivatives |
---|
Direct Parent | Pyrimidones |
---|
Alternative Parents | |
---|
Substituents | - Pyrimidone
- Aminopyrimidine
- Hydropyrimidine
- Heteroaromatic compound
- Azacycle
- Organic nitrogen compound
- Organic oxygen compound
- Organopnictogen compound
- Organic oxide
- Hydrocarbon derivative
- Primary amine
- Organooxygen compound
- Organonitrogen compound
- Amine
- Aromatic heteromonocyclic compound
|
---|
Molecular Framework | Aromatic heteromonocyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | > 300 °C | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | 8 mg/mL | Not Available | LogP | -1.73 | Hansch CH, Leo A and Hoekman DH. "Exploring QSAR: Hydrophobic, Electronic, and Steric Constraints. Volume 1" ACS Publications (1995). |
|
---|
Predicted Properties | |
---|
General References | - Mills GC, Schmalstieg FC, Newkirk KE, Goldblum RM: Cytosine and orotic acid in urine of immunodeficient children. Clin Chem. 1979 Mar;25(3):419-24. [PubMed:262183 ]
- Rodriguez Ortner E, Hayes RB, Weissfeld J, Gelmann EP: Effect of homeodomain protein NKX3.1 R52C polymorphism on prostate gland size. Urology. 2006 Feb;67(2):311-5. Epub 2006 Jan 25. [PubMed:16442598 ]
- Harvey BG, Maroni J, O'Donoghue KA, Chu KW, Muscat JC, Pippo AL, Wright CE, Hollmann C, Wisnivesky JP, Kessler PD, Rasmussen HS, Rosengart TK, Crystal RG: Safety of local delivery of low- and intermediate-dose adenovirus gene transfer vectors to individuals with a spectrum of morbid conditions. Hum Gene Ther. 2002 Jan 1;13(1):15-63. [PubMed:11779412 ]
- Cheng JC, Yoo CB, Weisenberger DJ, Chuang J, Wozniak C, Liang G, Marquez VE, Greer S, Orntoft TF, Thykjaer T, Jones PA: Preferential response of cancer cells to zebularine. Cancer Cell. 2004 Aug;6(2):151-8. [PubMed:15324698 ]
- Carotti D, Funiciello S, Lavia P, Caiafa P, Strom R: Different effects of histone H1 on de novo DNA methylation in vitro depend on both the DNA base composition and the DNA methyltransferase. Biochemistry. 1996 Sep 10;35(36):11660-7. [PubMed:8794746 ]
- Tawa R, Ueno S, Yamamoto K, Yamamoto Y, Sagisaka K, Katakura R, Kayama T, Yoshimoto T, Sakurai H, Ono T: Methylated cytosine level in human liver DNA does not decline in aging process. Mech Ageing Dev. 1992 Mar 1;62(3):255-61. [PubMed:1583911 ]
- Tsuchiya K, Tajima H, Yamada M, Takahashi H, Kuwae T, Sunaga K, Katsube N, Ishitani R: Disclosure of a pro-apoptotic glyceraldehyde-3-phosphate dehydrogenase promoter: anti-dementia drugs depress its activation in apoptosis. Life Sci. 2004 May 14;74(26):3245-58. [PubMed:15094325 ]
- Putta MR, Zhu F, Li Y, Bhagat L, Cong Y, Kandimalla ER, Agrawal S: Novel oligodeoxynucleotide agonists of TLR9 containing N3-Me-dC or N1-Me-dG modifications. Nucleic Acids Res. 2006 Jun 23;34(11):3231-8. Print 2006. [PubMed:16798912 ]
- Bawdon RE, Sobhi S, Dax J: The transfer of anti-human immunodeficiency virus nucleoside compounds by the term human placenta. Am J Obstet Gynecol. 1992 Dec;167(6):1570-4. [PubMed:1335207 ]
- Sawamura D, Abe R, Goto M, Akiyama M, Hemmi H, Akira S, Shimizu H: Direct injection of plasmid DNA into the skin induces dermatitis by activation of monocytes through toll-like receptor 9. J Gene Med. 2005 May;7(5):664-71. [PubMed:15655803 ]
- Thajeb P, Ma YS, Tzen CY, Chuang CK, Wu TY, Chen SC, Wei YH: Oculopharyngeal somatic myopathy in a patient with a novel large-scale 3,399 bp deletion and a homoplasmic T5814C transition of the mitochondrial DNA. Clin Neurol Neurosurg. 2006 Jun;108(4):407-10. [PubMed:16644408 ]
- Sigalotti L, Coral S, Nardi G, Spessotto A, Cortini E, Cattarossi I, Colizzi F, Altomonte M, Maio M: Promoter methylation controls the expression of MAGE2, 3 and 4 genes in human cutaneous melanoma. J Immunother. 2002 Jan-Feb;25(1):16-26. [PubMed:11924907 ]
- Costa E, Grayson DR, Mitchell CP, Tremolizzo L, Veldic M, Guidotti A: GABAergic cortical neuron chromatin as a putative target to treat schizophrenia vulnerability. Crit Rev Neurobiol. 2003;15(2):121-42. [PubMed:14977367 ]
- Machwe A, Orren DK, Bohr VA: Accelerated methylation of ribosomal RNA genes during the cellular senescence of Werner syndrome fibroblasts. FASEB J. 2000 Sep;14(12):1715-24. [PubMed:10973920 ]
- Arslan H: COVID-19 prediction based on genome similarity of human SARS-CoV-2 and bat SARS-CoV-like coronavirus. Comput Ind Eng. 2021 Nov;161:107666. doi: 10.1016/j.cie.2021.107666. Epub 2021 Sep 8. [PubMed:34511707 ]
|
---|