Record Information |
---|
Version | 2.0 |
---|
Created at | 2005-11-16 15:48:42 UTC |
---|
Updated at | 2023-04-27 22:22:29 UTC |
---|
NP-MRD ID | NP0000907 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | 3-Methylhistidine |
---|
Description | 3-Methylhistidine, also known as 3-MHis or 3MH, belongs to the class of organic compounds known as histidine and derivatives. 3MH is also classified as a methylamino acid. Methylamino acids are primarily proteogenic amino acids (found in proteins) which have been methylated (in situ) on their side chains by various methyltransferase enzymes. 3-Methylhistidine is also classified as a member of the class of compounds known as L-alpha-amino acids. L-alpha-Amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. 3-Methylhistidine is generated from histidine residues found in proteins. Histidine can be methylated at either the N1 or N3 position of its imidazole ring, yielding the isomers 1-methylhistidine (1MH; also referred to as pi-methylhistidine) or 3-methylhistidine (3MH; tau-methylhistidine), respectively. There is considerable confusion with regard to the nomenclature of the methylated nitrogen atoms on the imidazole ring of histidine and other histidine-containing peptides such as anserine. In particular, older literature (mostly prior to the year 2000) designated anserine (Npi methylated) as beta-alanyl-N1-methyl-histidine, whereas according to standard IUPAC nomenclature, anserine is correctly named as beta-alanyl-N3-methyl-histidine. As a result, many papers published prior to the year 2000 incorrectly identified 1MH as a specific marker for dietary consumption or various pathophysiological effects when they really were referring to 3MH (PMID: 24137022 ). Histidine methylation on the 3- or tau site is mediated by the enzyme known as METTL18. METTL18 is a nuclear methyltransferase protein that contains a functional nuclear localization signal and accumulates in nucleoli. Urinary concentrations of 3-methylhistidine can be used as a biomarker for skeletal muscle protein breakdown in humans who have been subject to muscle injury (PMID: 16079625 ). 3-Methylhistidine is formed by the posttranslational methylation of histidine residues of the main myofibrillar proteins actin and myosin. During protein catabolism, 3-methylhistidine is released but cannot be reutilized. Therefore, the plasma concentration and urine excretion of 3-methylhistidine are sensitive markers of myofibrillar protein degradation (PMID: 32235743 ). Approximately 75% of 3-methylhistidine is estimated to originate from skeletal muscle (PMID: 32235743 ). In addition to the degradation of muscle proteins, the 3-methylhistidine level is affected by the degradation of intestinal proteins and meat intake. 3-Methylhistidine exists in all eukaryotes, ranging from yeast to humans. In humans, 3-methylhistidine is involved in methylhistidine metabolism. 3-Methylhistidine has been found to be associated with several diseases such as diabetes mellitus type 2, eosinophilic esophagitis, and kidney disease. The normal concentration of 3-methylhistidine in the urine of healthy adult humans has been detected and quantified in a range of 3.63–69.27 Micromoles per millimole (umol/mmol) of creatinine, with most studies reporting the average urinary concentration between 15–20 umol/mmol of creatinine. The average concentration of 3-methylhistidine in human blood plasma has been detected and quantified at 2.85 Micromolar (uM) with a range of 0.0–5.9 UM. As a general rule, urinary 1MH is associated with white meat intake (p< 0.001), Whereas urinary 3MH is associated with red meat intake (p< 0.001) (PMID: 34091671 ). |
---|
Structure | [H][C@](N)(CC1=CN=CN1C)C(O)=O InChI=1S/C7H11N3O2/c1-10-4-9-3-5(10)2-6(8)7(11)12/h3-4,6H,2,8H2,1H3,(H,11,12)/t6-/m0/s1 |
---|
Synonyms | Value | Source |
---|
(2S)-2-Amino-3-(1-methyl-1H-imidazol-5-yl)propanoic acid | ChEBI | 3-Methyl-L-histidine | ChEBI | N(Pai)-methyl-L-histidine | ChEBI | N-pros-Methyl-L-histidine | ChEBI | Tau-methylhistidine | ChEBI | (2S)-2-Amino-3-(1-methyl-1H-imidazol-5-yl)propanoate | Generator | 3-N-Methyl-L-histidine | HMDB | L-3-Methylhistidine | HMDB | N(pros)-Methyl-L-histidine | HMDB | N3-Methyl-L-histidine | HMDB | Tau-methyl-L-histidine | HMDB | 3-Methylhistidine hydride | HMDB | N(Tau)-methylhistidine | HMDB | 3-Methylhistidine dihydrochloride | HMDB | N Tau-methylhistidine | HMDB | N(Pi)-methyl-L-histidine | HMDB | Pi-methyl-L-histidine | HMDB | 3-Methylhistidine | ChEBI |
|
---|
Chemical Formula | C7H11N3O2 |
---|
Average Mass | 169.1811 Da |
---|
Monoisotopic Mass | 169.08513 Da |
---|
IUPAC Name | (2S)-2-amino-3-(1-methyl-1H-imidazol-5-yl)propanoic acid |
---|
Traditional Name | 3,methylhistidine |
---|
CAS Registry Number | 368-16-1 |
---|
SMILES | [H][C@](N)(CC1=CN=CN1C)C(O)=O |
---|
InChI Identifier | InChI=1S/C7H11N3O2/c1-10-4-9-3-5(10)2-6(8)7(11)12/h3-4,6H,2,8H2,1H3,(H,11,12)/t6-/m0/s1 |
---|
InChI Key | JDHILDINMRGULE-LURJTMIESA-N |
---|
Experimental Spectra |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, simulated) | Ahselim | | | 2023-04-27 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Predicted Spectra |
---|
|
| Not Available | Chemical Shift Submissions |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 400 MHz, H2O, simulated) | v.dorna83@yahoo.com | Not Available | Not Available | 2021-08-02 | View Spectrum |
| Species |
---|
Species of Origin | |
---|
Species Where Detected | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as histidine and derivatives. Histidine and derivatives are compounds containing cysteine or a derivative thereof resulting from reaction of cysteine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organic acids and derivatives |
---|
Class | Carboxylic acids and derivatives |
---|
Sub Class | Amino acids, peptides, and analogues |
---|
Direct Parent | Histidine and derivatives |
---|
Alternative Parents | |
---|
Substituents | - Histidine or derivatives
- Alpha-amino acid
- L-alpha-amino acid
- Imidazolyl carboxylic acid derivative
- Aralkylamine
- N-substituted imidazole
- Azole
- Imidazole
- Heteroaromatic compound
- Amino acid
- Carboxylic acid
- Azacycle
- Organoheterocyclic compound
- Monocarboxylic acid or derivatives
- Organic nitrogen compound
- Organonitrogen compound
- Organooxygen compound
- Primary amine
- Primary aliphatic amine
- Hydrocarbon derivative
- Organic oxide
- Organopnictogen compound
- Carbonyl group
- Organic oxygen compound
- Amine
- Aromatic heteromonocyclic compound
|
---|
Molecular Framework | Aromatic heteromonocyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | 200 mg/mL at 25 °C | Beilstein Handbook of Organic Chemistry (Handbuch der Organischen Chemie), 4th Edition | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Sjolin J, Stjernstrom H, Henneberg S, Hambraeus L, Friman G: Evaluation of urinary 3-methylhistidine excretion in infection by measurements of 1-methylhistidine and the creatinine ratios. Am J Clin Nutr. 1989 Jan;49(1):62-70. [PubMed:2912013 ]
- Bucciante G, Mencini A, Boninsegna A, Branca D, Scutari A, Scutari G: 3-Methylhistidine urinary excretion as an index of skeletal muscle protein metabolism: reference values. G Clin Med. 1985 Nov-Dec;66(11-12):451-8. [PubMed:3835089 ]
- Schmitz JE: [Effect of metabolism-oriented substrate administration on energy and protein metabolism in polytraumatized artificial respiration patients]. Infusionsther Klin Ernahr. 1984 Aug;11(4):205-18. [PubMed:6434422 ]
- McKeran RO, Halliday D, Purkiss P: Comparison of human myofibrillar protein catabolic rate derived from 3-methylhistidine excretion with synthetic rate from muscle biopsies during L-[alpha-15N]lysine infusion. Clin Sci Mol Med. 1978 May;54(5):471-5. [PubMed:750147 ]
- Teahon K, Rideout JM: A sensitive and specific high performance liquid chromatographic assay for imidazole dipeptides and 3-methylhistidine in human muscle biopsies, serum and urine. Biomed Chromatogr. 1992 Jan-Feb;6(1):16-9. [PubMed:1600369 ]
- Adlerberth A, Jagenburg R, Lindstedt G, Stenstrom G, Hasselgren PO: Effects of thyroid hormone and beta-adrenoceptor blocking agents on urinary excretion of 3-methylhistidine and plasma amino acids in man. Eur J Clin Invest. 1986 Aug;16(4):316-20. [PubMed:3093243 ]
- Wang Z, Deurenberg P, Matthews DE, Heymsfield SB: Urinary 3-methylhistidine excretion: association with total body skeletal muscle mass by computerized axial tomography. JPEN J Parenter Enteral Nutr. 1998 Mar-Apr;22(2):82-6. [PubMed:9527964 ]
- Nygren J, Thorell A, Brismar K, Essen P, Wernerman J, McNurlan MA, Garlick PJ, Ljungqvist O: Glucose flux is normalized by compensatory hyperinsulinaemia in growth hormone-induced insulin resistance in healthy subjects, while skeletal muscle protein synthesis remains unchanged. Clin Sci (Lond). 2002 Apr;102(4):457-64. [PubMed:11914108 ]
- Elia M, Carter A, Bacon S, Winearls CG, Smith R: Clinical usefulness of urinary 3-methylhistidine excretion in indicating muscle protein breakdown. Br Med J (Clin Res Ed). 1981 Jan 31;282(6261):351-4. [PubMed:6780020 ]
- Rathmacher JA, Flakoll PJ, Nissen SL: A compartmental model of 3-methylhistidine metabolism in humans. Am J Physiol. 1995 Jul;269(1 Pt 1):E193-8. [PubMed:7631776 ]
- Lunyong VE, Friedman Z: Myofibrillar protein degradation in premature infants with respiratory distress as assessed by 3-methylhistidine and creatinine excretions. Am J Clin Nutr. 1982 Sep;36(3):485-91. [PubMed:7113954 ]
- Buchholz-Wimmer GB, Wimmer W, Herbertz L, Reinauer H: [3-Methylhistidine as a parameter for the determination of muscle proteolysis in the post-stress syndrome and in diabetes mellitus]. Infusionsther Klin Ernahr. 1984 Jun;11(3):168-74. [PubMed:6434416 ]
- Vesali RF, Klaude M, Thunblad L, Rooyackers OE, Wernerman J: Contractile protein breakdown in human leg skeletal muscle as estimated by [2H3]-3-methylhistidine: a new method. Metabolism. 2004 Aug;53(8):1076-80. [PubMed:15281022 ]
- Bird SP, Tarpenning KM, Marino FE: Independent and combined effects of liquid carbohydrate/essential amino acid ingestion on hormonal and muscular adaptations following resistance training in untrained men. Eur J Appl Physiol. 2006 May;97(2):225-38. Epub 2006 Mar 24. [PubMed:16456674 ]
- Lamisse F, May MA, Couet C, Constans T, Bacq Y, Delarue J, Lamagnere JP, Colombat P, Garrigue MA: [Changes in nutritional status at the initial phase of treatment of cancers and malignant hemopathies]. Rev Med Interne. 1987 May-Jun;8(3):257-61. [PubMed:3616232 ]
- Neuhauser M, Bergstrom J, Chao L, Holmstrom J, Nordlund L, Vinnars E, Furst P: Urinary excretion of 3-methylhistidine as an index of muscle protein catabolism in postoperative trauma: the effect of parenteral nutrition. Metabolism. 1980 Dec;29(12):1206-13. [PubMed:6779092 ]
- Emery PW, Rennie MJ: Elimination by formaldehyde of interference with 3-methylhistidine determination: application of the method to the study of muscle protein degradation. Anal Biochem. 1982 Oct;126(1):67-73. [PubMed:7181118 ]
- Tomas FM, Ballard FJ, Pope LM: Age-dependent changes in the rate of myofibrillar protein degradation in humans as assessed by 3-methylhistidine and creatinine excretion. Clin Sci (Lond). 1979 Apr;56(4):341-6. [PubMed:477219 ]
- Long CL, Dillard DR, Bodzin JH, Geiger JW, Blakemore WS: Validity of 3-methylhistidine excretion as an indicator of skeletal muscle protein breakdown in humans. Metabolism. 1988 Sep;37(9):844-9. [PubMed:3138511 ]
- Young VR, Munro HN: Ntau-methylhistidine (3-methylhistidine) and muscle protein turnover: an overview. Fed Proc. 1978 Jul;37(9):2291-300. [PubMed:350635 ]
- Said MY, Rodriguez-Nino A, Post A, Schutten JC, Kieneker LM, Gomes-Neto AW, van Londen M, Oste MC, Borgonjen-van den Berg KJ, Nolte IM, van den Berg E, de Blaauw P, van der Krogt J, Heiner-Fokkema MR, Navis G, Yard BA, Bakker SJ: Meat intake and risk of mortality and graft failure in kidney transplant recipients. Am J Clin Nutr. 2021 Jun 5. pii: 6294068. doi: 10.1093/ajcn/nqab185. [PubMed:34091671 ]
- Chinkes DL: Methods for measuring tissue protein breakdown rate in vivo. Curr Opin Clin Nutr Metab Care. 2005 Sep;8(5):534-7. doi: 10.1097/01.mco.0000170754.25372.37. [PubMed:16079625 ]
- Holecek M: Histidine in Health and Disease: Metabolism, Physiological Importance, and Use as a Supplement. Nutrients. 2020 Mar 22;12(3). pii: nu12030848. doi: 10.3390/nu12030848. [PubMed:32235743 ]
|
---|