Record Information |
---|
Version | 2.0 |
---|
Created at | 2005-11-16 15:48:42 UTC |
---|
Updated at | 2024-09-17 15:42:59 UTC |
---|
NP-MRD ID | NP0000795 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | Coenzyme A |
---|
Description | Coenzyme A (CoA, CoASH, or HSCoA) is a coenzyme notable for its role in the synthesis and oxidization of fatty acids and the oxidation of pyruvate in the citric acid cycle. It is adapted from beta-mercaptoethylamine, panthothenate, and adenosine triphosphate. It is also a parent compound for other transformation products, including but not limited to, phenylglyoxylyl-CoA, tetracosanoyl-CoA, and 6-hydroxyhex-3-enoyl-CoA. Coenzyme A is synthesized in a five-step process from pantothenate and cysteine. In the first step pantothenate (vitamin B5) is phosphorylated to 4'-phosphopantothenate by the enzyme pantothenate kinase (PanK, CoaA, CoaX). In the second step, a cysteine is added to 4'-phosphopantothenate by the enzyme phosphopantothenoylcysteine synthetase (PPC-DC, CoaB) to form 4'-phospho-N-pantothenoylcysteine (PPC). In the third step, PPC is decarboxylated to 4'-phosphopantetheine by phosphopantothenoylcysteine decarboxylase (CoaC). In the fourth step, 4'-phosphopantetheine is adenylylated to form dephospho-CoA by the enzyme phosphopantetheine adenylyl transferase (CoaD). Finally, dephospho-CoA is phosphorylated using ATP to coenzyme A by the enzyme dephosphocoenzyme A kinase (CoaE). Since coenzyme A is, in chemical terms, a thiol, it can react with carboxylic acids to form thioesters, thus functioning as an acyl group carrier. CoA assists in transferring fatty acids from the cytoplasm to the mitochondria. A molecule of coenzyme A carrying an acetyl group is also referred to as acetyl-CoA. When it is not attached to an acyl group, it is usually referred to as 'CoASH' or 'HSCoA'. Coenzyme A is also the source of the phosphopantetheine group that is added as a prosthetic group to proteins such as acyl carrier proteins and formyltetrahydrofolate dehydrogenase. Acetyl-CoA is an important molecule itself. It is the precursor to HMG CoA which is a vital component in cholesterol and ketone synthesis. Furthermore, it contributes an acetyl group to choline to produce acetylcholine in a reaction catalysed by choline acetyltransferase. Its main task is conveying the carbon atoms within the acetyl group to the citric acid cycle to be oxidized for energy production (Wikipedia). |
---|
Structure | CC(C)(COP(O)(=O)OP(O)(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP(O)(O)=O)N1C=NC2=C1N=CN=C2N)[C@@H](O)C(=O)NCCC(=O)NCCS InChI=1S/C21H36N7O16P3S/c1-21(2,16(31)19(32)24-4-3-12(29)23-5-6-48)8-41-47(38,39)44-46(36,37)40-7-11-15(43-45(33,34)35)14(30)20(42-11)28-10-27-13-17(22)25-9-26-18(13)28/h9-11,14-16,20,30-31,48H,3-8H2,1-2H3,(H,23,29)(H,24,32)(H,36,37)(H,38,39)(H2,22,25,26)(H2,33,34,35)/t11-,14-,15-,16+,20-/m1/s1 |
---|
Synonyms | Value | Source |
---|
3'-Phosphoadenosine-(5')diphospho(4')pantatheine | ChEBI | [(2R,3S,4R,5R)-5-(6-Amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)tetrahydrofuran-2-yl]methyl (3R)-3-hydroxy-4-({3-oxo-3-[(2-sulfanylethyl)amino]propyl}amino)-2,2-dimethyl-4-oxobutyl dihydrogen diphosphate | ChEBI | CoA | ChEBI | CoA-SH | ChEBI | CoASH | ChEBI | Coenzym a | ChEBI | HSCoA | ChEBI | Koenzym a | ChEBI | [(2R,3S,4R,5R)-5-(6-Amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)tetrahydrofuran-2-yl]methyl (3R)-3-hydroxy-4-({3-oxo-3-[(2-sulfanylethyl)amino]propyl}amino)-2,2-dimethyl-4-oxobutyl dihydrogen diphosphoric acid | Generator | [(2R,3S,4R,5R)-5-(6-Amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)tetrahydrofuran-2-yl]methyl (3R)-3-hydroxy-4-({3-oxo-3-[(2-sulphanylethyl)amino]propyl}amino)-2,2-dimethyl-4-oxobutyl dihydrogen diphosphate | Generator | [(2R,3S,4R,5R)-5-(6-Amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)tetrahydrofuran-2-yl]methyl (3R)-3-hydroxy-4-({3-oxo-3-[(2-sulphanylethyl)amino]propyl}amino)-2,2-dimethyl-4-oxobutyl dihydrogen diphosphoric acid | Generator | a, Coenzyme | HMDB | 18-CoA-18-oxo-Dinor-LTB4 | HMDB | Acetoacetyl coenzyme A sodium salt | HMDB | CoA Hydrate | HMDB | coenzyme A Hydrate | HMDB | coenzyme A-SH | HMDB | coenzyme ASH | HMDB | Depot-zeel | HMDB | Propionyl CoA | HMDB | Propionyl coenzyme A | HMDB | S-Propanoate | HMDB | S-Propanoate CoA | HMDB | S-Propanoate coenzyme A | HMDB | S-Propanoic acid | HMDB | S-Propionate CoA | HMDB | S-Propionate coenzyme A | HMDB | Zeel | HMDB | Coenzyme A | HMDB |
|
---|
Chemical Formula | C21H36N7O16P3S |
---|
Average Mass | 767.5340 Da |
---|
Monoisotopic Mass | 767.11521 Da |
---|
IUPAC Name | {[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-({2-[(2-sulfanylethyl)carbamoyl]ethyl}carbamoyl)propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid |
---|
Traditional Name | coenzyme A |
---|
CAS Registry Number | 85-61-0 |
---|
SMILES | CC(C)(COP(O)(=O)OP(O)(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP(O)(O)=O)N1C=NC2=C1N=CN=C2N)[C@@H](O)C(=O)NCCC(=O)NCCS |
---|
InChI Identifier | InChI=1S/C21H36N7O16P3S/c1-21(2,16(31)19(32)24-4-3-12(29)23-5-6-48)8-41-47(38,39)44-46(36,37)40-7-11-15(43-45(33,34)35)14(30)20(42-11)28-10-27-13-17(22)25-9-26-18(13)28/h9-11,14-16,20,30-31,48H,3-8H2,1-2H3,(H,23,29)(H,24,32)(H,36,37)(H,38,39)(H2,22,25,26)(H2,33,34,35)/t11-,14-,15-,16+,20-/m1/s1 |
---|
InChI Key | RGJOEKWQDUBAIZ-IBOSZNHHSA-N |
---|
Experimental Spectra |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Species Where Detected | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as coenzyme a and derivatives. These are derivative of vitamin B5 containing a 4'-phosphopantetheine moiety attached to a diphospho-adenosine. |
---|
Kingdom | Organic compounds |
---|
Super Class | Nucleosides, nucleotides, and analogues |
---|
Class | Purine nucleotides |
---|
Sub Class | Purine ribonucleotides |
---|
Direct Parent | Coenzyme A and derivatives |
---|
Alternative Parents | |
---|
Substituents | - Coenzyme a or derivatives
- Purine ribonucleoside diphosphate
- Pentose phosphate
- Pentose-5-phosphate
- Ribonucleoside 3'-phosphate
- Glycosyl compound
- N-glycosyl compound
- Organic pyrophosphate
- Pentose monosaccharide
- Monosaccharide phosphate
- 6-aminopurine
- Purine
- Imidazopyrimidine
- Aminopyrimidine
- Monoalkyl phosphate
- Organic phosphoric acid derivative
- N-substituted imidazole
- Phosphoric acid ester
- Monosaccharide
- Alkyl phosphate
- Pyrimidine
- Imidolactam
- Imidazole
- Azole
- Heteroaromatic compound
- Tetrahydrofuran
- Secondary alcohol
- Oxacycle
- Alkylthiol
- Azacycle
- Organoheterocyclic compound
- Carboximidic acid
- Carboximidic acid derivative
- Organic 1,3-dipolar compound
- Propargyl-type 1,3-dipolar organic compound
- Organooxygen compound
- Alcohol
- Hydrocarbon derivative
- Organic nitrogen compound
- Organic oxide
- Primary amine
- Organopnictogen compound
- Organic oxygen compound
- Amine
- Organosulfur compound
- Organonitrogen compound
- Aromatic heteropolycyclic compound
|
---|
Molecular Framework | Aromatic heteropolycyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Properties | |
---|
Predicted Properties | |
---|
General References | - Wendel U, Zass R, Leupold D: Contribution of odd-numbered fatty acid oxidation to propionate production in neonates with methylmalonic and propionic acidaemias. Eur J Pediatr. 1993 Dec;152(12):1021-3. [PubMed:8131803 ]
- Bergstrom T, Greter J, Levin AH, Steen G, Tryding N, Wass U: Propionyl-CoA carboxylase deficiency: case report, effect of low-protein diet and identification of 3-oxo-2-methylvaleric acid 3-hydroxy-2-methylvaleric acid, and maleic acid in urine. Scand J Clin Lab Invest. 1981 Apr;41(2):117-26. [PubMed:7313494 ]
- Roe CR, Sweetman L, Roe DS, David F, Brunengraber H: Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. J Clin Invest. 2002 Jul;110(2):259-69. [PubMed:12122118 ]
- Yano S, Li L, Le TP, Moseley K, Guedalia A, Lee J, Gonzalez I, Boles RG: Infantile mitochondrial DNA depletion syndrome associated with methylmalonic aciduria and 3-methylcrotonyl-CoA and propionyl-CoA carboxylase deficiencies in two unrelated patients: a new phenotype of mtDNA depletion syndrome. J Inherit Metab Dis. 2003;26(5):481-8. [PubMed:14518828 ]
- Kretschmer RE, Bachmann C: Methylcitric acid determination in amniotic fluid by electron-impact mass fragmentography. J Clin Chem Clin Biochem. 1988 May;26(5):345-8. [PubMed:3404093 ]
- Osmundsen H, Bremer J, Pedersen JI: Metabolic aspects of peroxisomal beta-oxidation. Biochim Biophys Acta. 1991 Sep 11;1085(2):141-58. [PubMed:1892883 ]
- Reihner E, Angelin B, Rudling M, Ewerth S, Bjorkhem I, Einarsson K: Regulation of hepatic cholesterol metabolism in humans: stimulatory effects of cholestyramine on HMG-CoA reductase activity and low density lipoprotein receptor expression in gallstone patients. J Lipid Res. 1990 Dec;31(12):2219-26. [PubMed:2090716 ]
- Salen G, Batta AK, Tint GS, Shefer S: Comparative effects of lovastatin and chenodeoxycholic acid on plasma cholestanol levels and abnormal bile acid metabolism in cerebrotendinous xanthomatosis. Metabolism. 1994 Aug;43(8):1018-22. [PubMed:8052141 ]
- Lehnert W, Junker A: [2-Methyl-3-oxovaleric acid: a characteristic metabolite in propionic acidemia]. Clin Chim Acta. 1980 May 21;104(1):47-51. [PubMed:7389125 ]
|
---|