Np mrd loader

Record Information
Version1.0
Created at2005-11-16 15:48:42 UTC
Updated at2020-11-24 22:17:54 UTC
NP-MRD IDNP0000737
Secondary Accession NumbersNone
Natural Product Identification
Common Name2-Phenylaminoadenosine
DescriptionSelective A2 adenosine receptor agonist; potent coronary vasodilator; weak inhibitor of adenosine uptake by rat cerebral cortical synaptosomes; used as a vasodilator agent; is a potent anti-inflammatory agent, acting at its four G protein coupled receptors. Topical treatment of adenosine to foot wounds in diabetes mellitus has been shown in lab animals to drastically increase tissue repair and reconstruction. Topical administration of adenosine for use in wound healing deficiencies and diabetes mellitus in humans is currently under clinical investigation. Adenosine is a nucleoside comprised of adenine attached to a ribose (ribofuranose) moiety via a beta-N9-glycosidic bond.
Structure
Thumb
Synonyms
ValueSource
6-Amino-2-phenylamino-9-b-D-ribofuranosyl-9H-purineHMDB
6-Amino-2-phenylamino-9-beta-delta-ribofuranosyl-9H-purineHMDB
2-PhenylaminoadenosineMeSH
Chemical FormulaC16H18N6O4
Average Mass358.3519 Da
Monoisotopic Mass358.13895 Da
IUPAC Name2-[6-amino-2-(phenylamino)-9H-purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol
Traditional Name2-[6-amino-2-(phenylamino)purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol
CAS Registry Number53296-10-9
SMILES
NC1=C2N=CN(C3OC(CO)C(O)C3O)C2=NC(NC2=CC=CC=C2)=N1
InChI Identifier
InChI=1S/C16H18N6O4/c17-13-10-14(21-16(20-13)19-8-4-2-1-3-5-8)22(7-18-10)15-12(25)11(24)9(6-23)26-15/h1-5,7,9,11-12,15,23-25H,6H2,(H3,17,19,20,21)
InChI KeySCNILGOVBBRMBK-UHFFFAOYSA-N
Experimental Spectra
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
2D NMR[1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, 100%_DMSO, experimental)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Anas platyrhynchosFooDB
AnatidaeFooDB
Anser anserFooDB
Bison bisonFooDB
Bos taurusFooDB
Bos taurus X Bison bisonFooDB
Bubalus bubalisFooDB
Capra aegagrus hircusFooDB
CervidaeFooDB
Cervus canadensisFooDB
ColumbaFooDB
ColumbidaeFooDB
Dromaius novaehollandiaeFooDB
Equus caballusFooDB
Gallus gallusFooDB
Lagopus mutaFooDB
LeporidaeFooDB
Lepus timidusFooDB
Melanitta fuscaFooDB
Meleagris gallopavoFooDB
Numida meleagrisFooDB
OdocoileusFooDB
OryctolagusFooDB
Ovis ariesFooDB
PhasianidaeFooDB
Phasianus colchicusFooDB
Struthio camelusFooDB
Sus scrofaFooDB
Sus scrofa domesticaFooDB
Chemical Taxonomy
Description Belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety.
KingdomOrganic compounds
Super ClassNucleosides, nucleotides, and analogues
ClassPurine nucleosides
Sub ClassNot Available
Direct ParentPurine nucleosides
Alternative Parents
Substituents
  • Purine nucleoside
  • Glycosyl compound
  • N-glycosyl compound
  • 6-aminopurine
  • Pentose monosaccharide
  • Imidazopyrimidine
  • Purine
  • Aminopyrimidine
  • N-substituted imidazole
  • Monosaccharide
  • Monocyclic benzene moiety
  • Pyrimidine
  • Benzenoid
  • Imidazole
  • Azole
  • Tetrahydrofuran
  • Heteroaromatic compound
  • Secondary alcohol
  • Oxacycle
  • Azacycle
  • Organoheterocyclic compound
  • Primary amine
  • Amine
  • Alcohol
  • Organic nitrogen compound
  • Hydrocarbon derivative
  • Organopnictogen compound
  • Organic oxygen compound
  • Primary alcohol
  • Organooxygen compound
  • Organonitrogen compound
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External DescriptorsNot Available
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility3.93 g/LALOGPS
logP0.22ALOGPS
logP0.028ChemAxon
logS-2ALOGPS
pKa (Strongest Acidic)12.42ChemAxon
pKa (Strongest Basic)3.86ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count9ChemAxon
Hydrogen Donor Count5ChemAxon
Polar Surface Area151.57 ŲChemAxon
Rotatable Bond Count4ChemAxon
Refractivity91.63 m³·mol⁻¹ChemAxon
Polarizability36.34 ųChemAxon
Number of Rings4ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDHMDB0001069
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB022408
KNApSAcK IDNot Available
Chemspider ID1528
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN ID5981
PubChem Compound1585
PDB IDNot Available
ChEBI ID91804
Good Scents IDNot Available
References
General References
  1. Dionisotti S, Ongini E, Zocchi C, Kull B, Arslan G, Fredholm BB: Characterization of human A2A adenosine receptors with the antagonist radioligand [3H]-SCH 58261. Br J Pharmacol. 1997 Jun;121(3):353-60. [PubMed:9179373 ]
  2. Wilson CN, Batra VK: Lipopolysaccharide binds to and activates A(1) adenosine receptors on human pulmonary artery endothelial cells. J Endotoxin Res. 2002;8(4):263-71. [PubMed:12230916 ]
  3. Kull B, Arslan G, Nilsson C, Owman C, Lorenzen A, Schwabe U, Fredholm BB: Differences in the order of potency for agonists but not antagonists at human and rat adenosine A2A receptors. Biochem Pharmacol. 1999 Jan 1;57(1):65-75. [PubMed:9920286 ]
  4. Zhang H, Zhang S, Wang W, Wang Q, Kuang H, Wang Q: Characterizing metabolites and potential metabolic pathways changes to understanding the mechanism of medicinal plant Phellodendri Amurensis cortex against doxorubicin-induced nephritis rats using UPLC-Q/TOF-MS metabolomics. J Pharm Biomed Anal. 2020 Sep 5;188:113336. doi: 10.1016/j.jpba.2020.113336. Epub 2020 May 22. [PubMed:32653762 ]
  5. Bader A, Bintig W, Begandt D, Klett A, Siller IG, Gregor C, Schaarschmidt F, Weksler B, Romero I, Couraud PO, Hell SW, Ngezahayo A: Adenosine receptors regulate gap junction coupling of the human cerebral microvascular endothelial cells hCMEC/D3 by Ca(2+) influx through cyclic nucleotide-gated channels. J Physiol. 2017 Apr 15;595(8):2497-2517. doi: 10.1113/JP273150. Epub 2017 Feb 14. [PubMed:28075020 ]