Record Information |
---|
Version | 2.0 |
---|
Created at | 2005-11-16 15:48:42 UTC |
---|
Updated at | 2024-09-03 04:16:39 UTC |
---|
NP-MRD ID | NP0000617 |
---|
Natural Product DOI | https://doi.org/10.57994/0746 |
---|
Secondary Accession Numbers | |
---|
Natural Product Identification |
---|
Common Name | Deoxyadenosine |
---|
Description | Deoxyadenosine is a derivative of the nucleoside adenosine. It is composed of adenine attached to a deoxyribose moiety via a N9-glycosidic bond. Deoxyribose differs from ribose by the absence of oxygen in the 3' position of its ribose ring. Deoxyadenosine is a critical component of DNA. When present in sufficiently high levels, deoxyadensoine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of deoxyadenosine are associated with adenosine deaminase (ADA) deficiency, an inborn error of metabolism. ADA deficiency damages the immune system and causes severe combined immunodeficiency (SCID). People with SCID lack virtually all immune protection from bacteria, viruses, and fungi. They are prone to repeated and persistent infections that can be very serious or life-threatening. These infections are often caused by "opportunistic" organisms that ordinarily do not cause illness in people with a normal immune system. The main symptoms of ADA deficiency are pneumonia, chronic diarrhea, and widespread skin rashes. The mechanism by which dATP functions as an immunotoxin is as follows: Because deoxyadenosine is a precursor to dATP, a buildup of dATP in cells inhibits ribonucleotide reductase and prevents DNA synthesis, so cells are unable to divide. Since developing T cells and B cells are some of the most mitotically active cells, they are unable to divide and propagate to respond to immune challenges. High levels of deoxyadenosine also lead to an increase in S-adenosylhomocysteine, which is toxic to immature lymphocytes. |
---|
Structure | NC1=C2N=CN([C@H]3C[C@H](O)[C@@H](CO)O3)C2=NC=N1 InChI=1S/C10H13N5O3/c11-9-8-10(13-3-12-9)15(4-14-8)7-1-5(17)6(2-16)18-7/h3-7,16-17H,1-2H2,(H2,11,12,13)/t5-,6+,7+/m0/s1 |
---|
Synonyms | Value | Source |
---|
(2R,3S,5R)-5-(6-Amino-9H-purin-9-yl)-2-(hydroxymethyl)tetrahydrofuran-3-ol | ChEBI | 5-(6-AMINO-purin-9-yl)-2-hydroxymethyl-tetrahydro-furan-3-ol | ChEBI | 9-(2-Deoxy-beta-D-erythro-pentofuranosyl)adenine | ChEBI | 9-(2-Deoxy-beta-D-ribofuranosyl)-9H-purin-6-amine | ChEBI | Adenine deoxyribonucleoside | ChEBI | Adenyldeoxyriboside | ChEBI | dA | ChEBI | 2'-Deoxyadenosine | Kegg | 9-(2-Deoxy-b-D-erythro-pentofuranosyl)adenine | Generator | 9-(2-Deoxy-β-D-erythro-pentofuranosyl)adenine | Generator | 9-(2-Deoxy-b-D-ribofuranosyl)-9H-purin-6-amine | Generator | 9-(2-Deoxy-β-D-ribofuranosyl)-9H-purin-6-amine | Generator | 1-(6-Amino-9H-purin-9-yl)-1,2-dideoxy-b-D-ribofuranose | HMDB | 1-(6-Amino-9H-purin-9-yl)-1,2-dideoxy-beta-D-ribofuranose | HMDB | 1-(6-Amino-9H-purin-9-yl)-1,2-dideoxy-beta-delta-ribofuranose | HMDB | 2-Deoxyadenosine | HMDB | 9-(2-Deoxy-b-D-erythro-pentofuranosyl)-9H-purin-6-amine | HMDB | 9-(2-Deoxy-beta-D-erythro-pentofuranosyl)-9H-purin-6-amine | HMDB | 9-(2-Deoxy-beta-delta-erythro-pentofuranosyl)-9H-purin-6-amine | HMDB | 9-(2-Deoxy-beta-delta-erythro-pentofuranosyl)adenine | HMDB | 9-(2-Deoxy-beta-delta-ribofuranosyl)-9H-purin-6-amine | HMDB | Adenine deoxyribose | HMDB | Adenine-9 2-deoxy-b-D-erythro-pentofuranoside | HMDB | Adenine-9 2-deoxy-beta-D-erythro-pentofuranoside | HMDB | Adenine-9 2-deoxy-beta-delta-erythro-pentofuranoside | HMDB | Desoxyadenosine | HMDB | Deoxyadenosine | ChEBI |
|
---|
Chemical Formula | C10H13N5O3 |
---|
Average Mass | 251.2419 Da |
---|
Monoisotopic Mass | 251.10184 Da |
---|
IUPAC Name | (2R,3S,5R)-5-(6-amino-9H-purin-9-yl)-2-(hydroxymethyl)oxolan-3-ol |
---|
Traditional Name | 2-deoxyadenosine |
---|
CAS Registry Number | 958-09-8 |
---|
SMILES | NC1=NC=NC2=C1N=CN2[C@H]1C[C@H](O)[C@@H](CO)O1 |
---|
InChI Identifier | InChI=1S/C10H13N5O3/c11-9-8-10(13-3-12-9)15(4-14-8)7-1-5(17)6(2-16)18-7/h3-7,16-17H,1-2H2,(H2,11,12,13)/t5-,6+,7+/m0/s1 |
---|
InChI Key | OLXZPDWKRNYJJZ-RRKCRQDMSA-N |
---|
Experimental Spectra |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, simulated) | Ahselim | | | 2022-01-10 | View Spectrum | COSY NMR | [1H, 1H] NMR Spectrum (2D, 600 MHz, CD3OD, experimental) | yupingfu424@163.com | Not Available | Not Available | 2023-07-17 | View Spectrum | HMBC NMR | [1H, 13C] NMR Spectrum (2D, 600 MHz, CD3OD, experimental) | yupingfu424@163.com | Not Available | Not Available | 2023-07-17 | View Spectrum | HSQC NMR | [1H, 13C] NMR Spectrum (2D, 600 MHz, CD3OD, experimental) | yupingfu424@163.com | Not Available | Not Available | 2023-07-17 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, CD3OD, experimental) | yupingfu424@163.com | Not Available | Not Available | 2023-07-17 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, CD3OD, experimental) | yupingfu424@163.com | Not Available | Not Available | 2023-07-17 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, CD3OD, experimental) | yupingfu424@163.com | Not Available | Not Available | 2023-07-17 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Species Where Detected | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as purine 2'-deoxyribonucleosides. Purine 2'-deoxyribonucleosides are compounds consisting of a purine linked to a ribose which lacks a hydroxyl group at position 2. |
---|
Kingdom | Organic compounds |
---|
Super Class | Nucleosides, nucleotides, and analogues |
---|
Class | Purine nucleosides |
---|
Sub Class | Purine 2'-deoxyribonucleosides |
---|
Direct Parent | Purine 2'-deoxyribonucleosides |
---|
Alternative Parents | |
---|
Substituents | - Purine 2'-deoxyribonucleoside
- 6-aminopurine
- Imidazopyrimidine
- Purine
- Aminopyrimidine
- N-substituted imidazole
- Pyrimidine
- Imidolactam
- Azole
- Imidazole
- Heteroaromatic compound
- Tetrahydrofuran
- Secondary alcohol
- Oxacycle
- Azacycle
- Organoheterocyclic compound
- Amine
- Primary amine
- Primary alcohol
- Organooxygen compound
- Organonitrogen compound
- Hydrocarbon derivative
- Organopnictogen compound
- Alcohol
- Organic nitrogen compound
- Organic oxygen compound
- Aromatic heteropolycyclic compound
|
---|
Molecular Framework | Aromatic heteropolycyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | 189 °C | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | -0.55 | Hansch CH, Leo A and Hoekman DH. "Exploring QSAR: Hydrophobic, Electronic, and Steric Constraints. Volume 1" ACS Publications (1995). |
|
---|
Predicted Properties | |
---|
General References | - Yamamoto T, Moriwaki Y, Takahashi S, Fujita T, Tsutsumi Z, Yamakita J, Shimizu K, Shiota M, Ohta S, Higashino K: Determination of adenosine and deoxyadenosine in urine by high-performance liquid chromatography with column switching. J Chromatogr B Biomed Sci Appl. 1998 Nov 20;719(1-2):55-61. [PubMed:9869364 ]
- Wevers RA, Engelke UF, Moolenaar SH, Brautigam C, de Jong JG, Duran R, de Abreu RA, van Gennip AH: 1H-NMR spectroscopy of body fluids: inborn errors of purine and pyrimidine metabolism. Clin Chem. 1999 Apr;45(4):539-48. [PubMed:10102915 ]
- Brox LW, Pollock E, Belch A: Adenosine and deoxyadenosine toxicity in colony assay systems for human T-lymphocytes, B-lymphocytes, and granulocytes. Cancer Chemother Pharmacol. 1982;9(1):49-52. [PubMed:6982786 ]
- Fox RM, Tripp EH, Taylor IW: Analytical DNA flow cytometric analysis of deoxyadenosine toxicity in cultured human leukemic lymphoblasts. Mol Pharmacol. 1984 Sep;26(2):388-94. [PubMed:6332978 ]
- Bluestein HG, Thompson LF, Albert DA, Seegmiller JE: Altered deoxynucleoside triphosphate levels paralleling deoxyadenosine toxicity in adenosine deaminase inhibited human lymphocytes. Adv Exp Med Biol. 1980;122A:427-31. [PubMed:6968502 ]
- Juliusson G, Liliemark J: High complete remission rate from 2-chloro-2'-deoxyadenosine in previously treated patients with B-cell chronic lymphocytic leukemia: response predicted by rapid decrease of blood lymphocyte count. J Clin Oncol. 1993 Apr;11(4):679-89. [PubMed:8097528 ]
- Szabados E, Christopherson RI: Rapid radioassay for metabolites of adenosine and deoxyadenosine in erythrocytes. J Chromatogr B Biomed Appl. 1995 Dec 1;674(1):132-7. [PubMed:8749261 ]
- Hershfield MS, Kredich NM, Koller CA, Mitchell BS, Kurtzberg J, Kinney TR, Falletta JM: S-adenosylhomocysteine catabolism and basis for acquired resistance during treatment of T-cell acute lymphoblastic leukemia with 2'-deoxycoformycin alone and in combination with 9-beta-D-arabinofuranosyladenine. Cancer Res. 1983 Jul;43(7):3451-8. [PubMed:6601986 ]
- Mitchell BS, Edwards NL: Purine metabolizing enzymes as predictors of lymphoblast sensitivity to deoxyadenosine. J Lab Clin Med. 1984 Sep;104(3):414-24. [PubMed:6147383 ]
- Hayward AR: Resistance of pokeweed mitogen-stimulated B cells to inhibition by deoxyadenosine. Clin Exp Immunol. 1980 Jul;41(1):141-9. [PubMed:6969149 ]
- Carson DA, Wasson DB, Kaye J, Ullman B, Martin DW Jr, Robins RK, Montgomery JA: Deoxycytidine kinase-mediated toxicity of deoxyadenosine analogs toward malignant human lymphoblasts in vitro and toward murine L1210 leukemia in vivo. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6865-9. [PubMed:6256765 ]
- Carson DA, Carrera CJ, Kubota M, Wasson DB, Iizasa T: Genetic analysis of deoxyadenosine toxicity in dividing human lymphoblasts. Adv Exp Med Biol. 1986;195 Pt B:207-11. [PubMed:3020905 ]
- Webster DR, Simmonds HA, Perrett D, Levinsky RJ: Nucleotide levels and metabolism of adenosine and deoxyadenosine in intact erythrocytes deficient in adenosine deaminase. Adv Exp Med Biol. 1984;165 Pt A:363-6. [PubMed:6609529 ]
- Sheridan W, Gordon DS, Fullen AJ, Olson A, Vogler WR, Winton E: Preclinical studies on deoxycoformycin and deoxyadenosine as pharmacologic T cell purging tools. Bone Marrow Transplant. 1989 Sep;4(5):511-7. [PubMed:2790329 ]
|
---|