Record Information |
---|
Version | 2.0 |
---|
Created at | 2005-11-16 15:48:42 UTC |
---|
Updated at | 2021-10-07 20:42:27 UTC |
---|
NP-MRD ID | NP0000604 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | Galactitol |
---|
Description | Galactitol or dulcitol is a sugar alcohol that is a metabolic breakdown product of galactose. Galactose is derived from lactose in food (such as dairy products). When lactose is broken down by the enzyme lactase it produces glucose and galactose. Galactitol has a slightly sweet taste. It is produced from galactose in a reaction catalyzed by aldose reductase. When present in sufficiently high levels, galactitol can act as a metabotoxin, a neurotoxin, and a hepatotoxin. A neurotoxin is a compound that disrupts or attacks neural cells and neural tissue. A hepatotoxin as a compound that disrupts or attacks liver tissue or liver cells. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of galactitol are associated with at least two inborn errors of metabolism, including galactosemia and galactosemia type II. Galactosemia is a rare genetic metabolic disorder that affects an individual's ability to metabolize the sugar galactose properly. Excess lactose consumption in individuals with galactose intolerance or galactosemia activates aldose reductase to produce galactitol, thus depleting NADPH and leading to lowered glutathione reductase activity. As a result, hydrogen peroxide or other free radicals accumulate causing serious oxidative damage to various cells and tissues. In individuals with galactosemia, the enzymes needed for the further metabolism of galactose (galactose-1-phosphate uridyltransferase) are severely diminished or missing entirely, leading to toxic levels of galactose 1-phosphate, galactitol, and galactonate. High levels of galactitol in infants are specifically associated with hepatomegaly (an enlarged liver), cirrhosis, renal failure, cataracts, vomiting, seizure, hypoglycemia, lethargy, brain damage, and ovarian failure. |
---|
Structure | OC[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)CO InChI=1S/C6H14O6/c7-1-3(9)5(11)6(12)4(10)2-8/h3-12H,1-2H2/t3-,4+,5+,6- |
---|
Synonyms | Value | Source |
---|
(2R,3S,4R,5S)-Hexane-1,2,3,4,5,6-hexol | ChEBI | D-Dulcitol | ChEBI | D-Galactitol | ChEBI | Dulcitol | ChEBI | Dulcose | ChEBI | Euonymit | ChEBI | L-Galactitol | ChEBI | Melampyrin | ChEBI | Melampyrit | ChEBI | Ambap5938 | HMDB | Dulcite | HMDB | Hexitol | HMDB | Melampyrite | HMDB | Melampyrum | HMDB | Meso-galactitol | HMDB |
|
---|
Chemical Formula | C6H14O6 |
---|
Average Mass | 182.1718 Da |
---|
Monoisotopic Mass | 182.07904 Da |
---|
IUPAC Name | (2R,3S,4R,5S)-hexane-1,2,3,4,5,6-hexol |
---|
Traditional Name | galactitol |
---|
CAS Registry Number | 608-66-2 |
---|
SMILES | OC[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)CO |
---|
InChI Identifier | InChI=1S/C6H14O6/c7-1-3(9)5(11)6(12)4(10)2-8/h3-12H,1-2H2/t3-,4+,5+,6- |
---|
InChI Key | FBPFZTCFMRRESA-GUCUJZIJSA-N |
---|
Experimental Spectra |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Predicted Spectra |
---|
|
| Not Available | Chemical Shift Submissions |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 400 MHz, H2O, simulated) | varshavi.d26@gmail.com | Not Available | Not Available | 2021-08-02 | View Spectrum |
| Species |
---|
Species of Origin | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as sugar alcohols. These are hydrogenated forms of carbohydrate in which the carbonyl group (aldehyde or ketone, reducing sugar) has been reduced to a primary or secondary hydroxyl group. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organic oxygen compounds |
---|
Class | Organooxygen compounds |
---|
Sub Class | Carbohydrates and carbohydrate conjugates |
---|
Direct Parent | Sugar alcohols |
---|
Alternative Parents | |
---|
Substituents | - Sugar alcohol
- Monosaccharide
- Secondary alcohol
- Polyol
- Hydrocarbon derivative
- Primary alcohol
- Alcohol
- Aliphatic acyclic compound
|
---|
Molecular Framework | Aliphatic acyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | 189.5 °C | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | 31 mg/mL at 15 °C | Yalkowsky, S. H., & Dannenfelser, R. M. (1992). Aquasol database of aqueous solubility. College of Pharmacy, University of Arizona, Tucson, AZ, 189. | LogP | -3.10 | Hansch CH, Leo A and Hoekman DH. "Exploring QSAR: Hydrophobic, Electronic, and Steric Constraints. Volume 1" ACS Publications (1995). |
|
---|
Predicted Properties | |
---|
General References | - Ning C, Segal S: Plasma galactose and galactitol concentration in patients with galactose-1-phosphate uridyltransferase deficiency galactosemia: determination by gas chromatography/mass spectrometry. Metabolism. 2000 Nov;49(11):1460-6. [PubMed:11092512 ]
- Jakobs C, Warner TG, Sweetman L, Nyhan WL: Stable isotope dilution analysis of galactitol in amniotic fluid: an accurate approach to the prenatal diagnosis of galactosemia. Pediatr Res. 1984 Aug;18(8):714-8. [PubMed:6433315 ]
- Ning C, Reynolds R, Chen J, Yager C, Berry GT, McNamara PD, Leslie N, Segal S: Galactose metabolism by the mouse with galactose-1-phosphate uridyltransferase deficiency. Pediatr Res. 2000 Aug;48(2):211-7. [PubMed:10926297 ]
- Budde M, Gusek-Schneider GC, Junemann A, Jansen F, Shin YS: [Familial cataract in plasma galactitol increase without known enzyme defect]. Klin Monbl Augenheilkd. 1999 Oct;215(4):255-7. [PubMed:10572890 ]
- Berry GT, Hunter JV, Wang Z, Dreha S, Mazur A, Brooks DG, Ning C, Zimmerman RA, Segal S: In vivo evidence of brain galactitol accumulation in an infant with galactosemia and encephalopathy. J Pediatr. 2001 Feb;138(2):260-2. [PubMed:11174626 ]
- Pettit BR, King GS, Blau K: The analysis of hexitols in biological fluid by selected ion monitoring. Biomed Mass Spectrom. 1980 Jul;7(7):309-13. [PubMed:7448335 ]
- Ficicioglu C, Yager C, Segal S: Galactitol and galactonate in red blood cells of children with the Duarte/galactosemia genotype. Mol Genet Metab. 2005 Feb;84(2):152-9. Epub 2004 Dec 9. [PubMed:15670721 ]
- Jakobs C, Schweitzer S, Dorland B: Galactitol in galactosemia. Eur J Pediatr. 1995;154(7 Suppl 2):S50-2. [PubMed:7671965 ]
- Roboz J, Kappatos DC, Greaves J, Holland JF: Determination of polyols in serum by selected ion monitoring. Clin Chem. 1984 Oct;30(10):1611-5. [PubMed:6434200 ]
- Airey CM, Price DE, Kemp JV, Perkins CM, Wales JK: The effect of aldose reductase inhibition on erythrocyte polyols and galactitol accumulation in diabetic patients. Diabet Med. 1989 Dec;6(9):804-8. [PubMed:2533041 ]
- Schwarz HP, Schaefer T, Bachmann C: Galactose and galactitol in the urine of children with compound heterozygosity for Duarte variant and classical galactosemia (GtD/gt) after an oral galactose load. Clin Chem. 1985 Mar;31(3):420-2. [PubMed:3971562 ]
- Arola H, Sillanaukee P, Aine E, Koivula T, Isokoski M: Galactitol is not a cause of senile cataract. Graefes Arch Clin Exp Ophthalmol. 1992;230(3):240-2. [PubMed:1597290 ]
- Allen JT, Holton JB, Gillett MG: Gas-liquid chromatographic determination of galactitol in amniotic fluid for possible use in prenatal diagnosis of galactosaemia. Clin Chim Acta. 1981 Feb 19;110(1):59-63. [PubMed:7214715 ]
- Shetty HU, Holloway HW, Rapoport SI: Capillary gas chromatography combined with ion trap detection for quantitative profiling of polyols in cerebrospinal fluid and plasma. Anal Biochem. 1995 Jan 1;224(1):279-85. [PubMed:7710082 ]
- Berry GT, Palmieri M, Gross KC, Acosta PB, Henstenburg JA, Mazur A, Reynolds R, Segal S: The effect of dietary fruits and vegetables on urinary galactitol excretion in galactose-1-phosphate uridyltransferase deficiency. J Inherit Metab Dis. 1993;16(1):91-100. [PubMed:8487507 ]
|
---|