Np mrd loader

Record Information
Version2.0
Created at2005-11-16 15:48:42 UTC
Updated at2020-11-24 22:16:30 UTC
NP-MRD IDNP0000566
Secondary Accession NumbersNone
Natural Product Identification
Common NameL-3-Phenyllactic acid
DescriptionL-3-Phenyllactic acid (or PLA) is a chiral aromatic compound involved in phenylalanine metabolism. It is likely produced from phenylpyruvate via the action of lactate dehydrogenase. The D-form of this organic acid is typically derived from bacterial sources while the L-form is almost certainly endogenous. Levels of phenyllactate are normally very low in blood or urine. High levels of PLA in the urine or blood are often indicative of phenylketonuria (PKU) and hyperphenylalaninemia (HPA). PKU is due to lack of the enzyme phenylalanine hydroxylase (PAH), so that phenylalanine is converted not to tyrosine but to phenylpyruvic acid (a precursor of phenylactate). In particular, excessive phenylalanine is typically metabolized into phenylketones through, a transaminase pathway route involving glutamate. Metabolites of this transamination reaction include phenylacetate, phenylpyruvate and phenethylamine. In persons with PKU, dietary phenylalanine either accumulates in the body or some of it is converted to phenylpyruvic acid and then to phenyllactate through the action of lactate dehydrogenase. Individuals with PKU tend to excrete large quantities of phenylpyruvate, phenylacetate and phenyllactate, along with phenylalanine, in their urine. If untreated, mental retardation effects and microcephaly are evident by the first year along with other symptoms which include: Unusual irritability, epileptic seizures and skin lesions. Hyperactivity, EEG abnormalities and seizures, and severe learning disabilities are major clinical problems later in life. A "musty or mousy" odor of skin, hair, sweat and urine (due to phenylacetate accumulation); and a tendency to hypopigmentation and eczema are also observed. The neural-development effects of PKU are primarily due to the disruption of neurotransmitter synthesis. In particular, phenylalanine is a large, neutral amino acid which moves across the blood-brain barrier (BBB) via the large neutral amino acid transporter (LNAAT). Excessive phenylalanine in the blood saturates the transporter. Thus, excessive levels of phenylalanine significantly decrease the levels of other LNAAs in the brain. But since these amino acids are required for protein and neurotransmitter synthesis, phenylalanine accumulation disrupts brain development, leading to mental retardation.
Structure
Thumb
Synonyms
ValueSource
(R)-PhenyllactateChEBI
D-3-Phenyllactic acidChEBI
(R)-3-(Phenyl)lactateKegg
(R)-Phenyllactic acidGenerator
D-3-PhenyllactateGenerator
(R)-3-(Phenyl)lactic acidGenerator
L-3-PhenyllactateGenerator
(-)-2-Hydroxy-3-phenylpropanoateHMDB
(-)-2-Hydroxy-3-phenylpropanoic acidHMDB
(-)-2-Hydroxy-3-phenylpropionateHMDB
(-)-2-Hydroxy-3-phenylpropionic acidHMDB
(-)-3-PhenyllactateHMDB
(-)-3-Phenyllactic acidHMDB
(-)-b-PhenyllactateHMDB
(-)-b-Phenyllactic acidHMDB
(-)-beta-PhenyllactateHMDB
(-)-beta-Phenyllactic acidHMDB
(2S)-2-Hydroxy-3-phenylpropanoateHMDB
(2S)-2-Hydroxy-3-phenylpropanoic acidHMDB
(2S)-2-Hydroxy-3-phenylpropionateHMDB
(2S)-2-Hydroxy-3-phenylpropionic acidHMDB
(S)-3-Phenyl-lactateHMDB
(S)-3-Phenyl-lactic acidHMDB
(S)-3-Phenyllactic acidHMDB
(S)-a-Hydroxy-benzenepropanoateHMDB
(S)-a-Hydroxy-benzenepropanoic acidHMDB
(S)-alpha-Hydroxy-benzenepropanoateHMDB
(S)-alpha-Hydroxy-benzenepropanoic acidHMDB
(S)-b-PhenyllacticHMDB
(S)-beta-PhenyllacticHMDB
alpha-Hydroxy-beta-phenyl-propionic acidHMDB
HFAHMDB
L-(-)-3-Phenyllactic acidHMDB
L-2-Hydroxy-3-phenyl-propionic acidHMDB
L-beta-Phenyllactic acidHMDB
L-Phenyl lactateHMDB
Phenyllactic acidHMDB
(R)-3-PhenyllactateHMDB
Chemical FormulaC9H10O3
Average Mass166.1739 Da
Monoisotopic Mass166.06299 Da
IUPAC Name(2R)-2-hydroxy-3-phenylpropanoic acid
Traditional Name(R)-phenyllactate
CAS Registry Number20312-36-1
SMILES
O[C@H](CC1=CC=CC=C1)C(O)=O
InChI Identifier
InChI=1S/C9H10O3/c10-8(9(11)12)6-7-4-2-1-3-5-7/h1-5,8,10H,6H2,(H,11,12)/t8-/m1/s1
InChI KeyVOXXWSYKYCBWHO-MRVPVSSYSA-N
Experimental Spectra
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, experimental)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
2D NMR[1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Predicted Spectra
Not Available
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Anas platyrhynchosFooDB
AnatidaeFooDB
Anser anserFooDB
Aruncus dioicusLOTUS Database
Bison bisonFooDB
Bos taurusFooDB
Bos taurus X Bison bisonFooDB
Bubalus bubalisFooDB
Capra aegagrus hircusFooDB
CervidaeFooDB
Cervus canadensisFooDB
ColumbaFooDB
ColumbidaeFooDB
Dromaius novaehollandiaeFooDB
Equus caballusFooDB
Euphorbia petiolataLOTUS Database
Gallus gallusFooDB
Grosmannia crassivaginataLOTUS Database
Grosmannia huntiiLOTUS Database
Lagopus mutaFooDB
LeporidaeFooDB
Lepus timidusFooDB
Melanitta fuscaFooDB
Meleagris gallopavoFooDB
Numida meleagrisFooDB
OdocoileusFooDB
OryctolagusFooDB
Ovis ariesFooDB
PhasianidaeFooDB
Phasianus colchicusFooDB
Struthio camelusFooDB
Sus scrofaFooDB
Sus scrofa domesticaFooDB
Species Where Detected
Species NameSourceReference
Lactobacillus plantarum MiLAB 393KNApSAcK Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as phenylpropanoic acids. Phenylpropanoic acids are compounds with a structure containing a benzene ring conjugated to a propanoic acid.
KingdomOrganic compounds
Super ClassPhenylpropanoids and polyketides
ClassPhenylpropanoic acids
Sub ClassNot Available
Direct ParentPhenylpropanoic acids
Alternative Parents
Substituents
  • 3-phenylpropanoic-acid
  • Alpha-hydroxy acid
  • Monocyclic benzene moiety
  • Hydroxy acid
  • Benzenoid
  • Secondary alcohol
  • Carboxylic acid derivative
  • Carboxylic acid
  • Monocarboxylic acid or derivatives
  • Organic oxygen compound
  • Alcohol
  • Carbonyl group
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External Descriptors
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting Point121 - 125 °CNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility9.8 g/LALOGPS
logP0.84ALOGPS
logP1.18ChemAxon
logS-1.2ALOGPS
pKa (Strongest Acidic)4.02ChemAxon
pKa (Strongest Basic)-3.8ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area57.53 ŲChemAxon
Rotatable Bond Count3ChemAxon
Refractivity43.46 m³·mol⁻¹ChemAxon
Polarizability16.73 ųChemAxon
Number of Rings1ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDHMDB0000748
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB022220
KNApSAcK IDC00000150
Chemspider ID558480
KEGG Compound IDC05607
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound643327
PDB IDNot Available
ChEBI ID32978
Good Scents IDNot Available
References
General References
  1. Tekewe A, Singh S, Singh M, Mohan U, Banerjee UC: Development and validation of HPLC method for the resolution of drug intermediates: DL-3-Phenyllactic acid, DL-O-acetyl-3-phenyllactic acid and (+/-)-mexiletine acetamide enantiomers. Talanta. 2008 Mar 15;75(1):239-45. doi: 10.1016/j.talanta.2007.11.004. Epub 2007 Nov 13. [PubMed:18371874 ]
  2. Sadorn K, Saepua S, Punyain W, Saortep W, Choowong W, Rachtawee P, Pittayakhajonwut P: Chromanones and aryl glucoside analogs from the entomopathogenic fungus Aschersonia confluens BCC53152. Fitoterapia. 2020 Jul;144:104606. doi: 10.1016/j.fitote.2020.104606. Epub 2020 May 3. [PubMed:32376482 ]
  3. Yang B, Gelfanov VM, Perez-Tilve D, DuBois B, Rohlfs R, Levy J, Douros JD, Finan B, Mayer JP, DiMarchi RD: Optimization of Truncated Glucagon Peptides to Achieve Selective, High Potency, Full Antagonists. J Med Chem. 2021 Apr 22;64(8):4697-4708. doi: 10.1021/acs.jmedchem.0c02069. Epub 2021 Apr 6. [PubMed:33821647 ]
  4. Uengwetwanit T, Uawisetwathana U, Arayamethakorn S, Khudet J, Chaiyapechara S, Karoonuthaisiri N, Rungrassamee W: Multi-omics analysis to examine microbiota, host gene expression and metabolites in the intestine of black tiger shrimp (Penaeus monodon) with different growth performance. PeerJ. 2020 Aug 14;8:e9646. doi: 10.7717/peerj.9646. eCollection 2020. [PubMed:32864208 ]
  5. Xing SC, Mi JD, Chen JY, Hu JX, Liao XD: Metabolic activity of Bacillus coagulans R11 and the health benefits of and potential pathogen inhibition by this species in the intestines of laying hens under lead exposure. Sci Total Environ. 2020 Mar 20;709:134507. doi: 10.1016/j.scitotenv.2019.134507. Epub 2019 Dec 16. [PubMed:31881475 ]
  6. Menegatti C, Da Paixao Melo WG, Carrao DB, De Oliveira ARM, Do Nascimento FS, Lopes NP, Pupo MT: Paenibacillus polymyxa Associated with the Stingless Bee Melipona scutellaris Produces Antimicrobial Compounds against Entomopathogens. J Chem Ecol. 2018 Dec;44(12):1158-1169. doi: 10.1007/s10886-018-1028-z. Epub 2018 Oct 23. [PubMed:30350228 ]
  7. Tao H, Cui DF, Zhang YS: Synthesis and characteristics of an aspartame analogue, L-asparaginyl L-3-phenyllactic acid methyl ester. Acta Biochim Biophys Sin (Shanghai). 2004 Jun;36(6):385-9. doi: 10.1093/abbs/36.6.385. [PubMed:15188052 ]
  8. (). Andrew D. Abell, John W. Blunt, Glenn J. Foulds and Murray H. G. Munro Chemistry of the mycalamides: antiviral and antitumour compounds from a New Zealand marine sponge. Part 6.1–3 The synthesis and testing of analogues of the C(7)–C(10) fragment. J. Chem. Soc., Perkin Trans. 1, 1997, 1647 - 1654,. .