Np mrd loader

You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on NP-MRD.
Record Information
Version1.0
Created at2005-11-16 15:48:42 UTC
Updated at2021-08-19 23:58:09 UTC
NP-MRD IDNP0000480
Secondary Accession NumbersNone
Natural Product Identification
Common NameL-Lactic acid
DescriptionLactic acid is an organic acid. It is a chiral molecule, consisting of two optical isomers, L-lactic acid and D-lactic acid, with the L-isomer being the most common in living organisms. Lactic acid plays a role in several biochemical processes and is produced in the muscles during intense activity. In animals, L-lactate is constantly produced from pyruvate via the enzyme lactate dehydrogenase (LDH) in a process of fermentation during normal metabolism and exercise. It does not increase in concentration until the rate of lactate production exceeds the rate of lactate removal. This is governed by a number of factors, including monocarboxylate transporters, lactate concentration, the isoform of LDH, and oxidative capacity of tissues. The concentration of blood lactate is usually 1-2 mmol/L at rest, but can rise to over 20 mmol/L during intense exertion. There are some indications that lactate, and not glucose, is preferentially metabolized by neurons in the brain of several mammalian species, including mice, rats, and humans. Glial cells, using the lactate shuttle, are responsible for transforming glucose into lactate, and for providing lactate to the neurons. Lactate measurement in critically ill patients has been traditionally used to stratify patients with poor outcomes. However, plasma lactate levels are the result of a finely tuned interplay of factors that affect the balance between its production and its clearance. When the oxygen supply does not match its consumption, organisms adapt in many different ways, up to the point when energy failure occurs. Lactate, being part of the adaptive response, may then be used to assess the severity of the supply/demand imbalance. In such a scenario, the time to intervention becomes relevant: Early and effective treatment may allow tissues and cells to revert to a normal state, as long as the oxygen machinery (i.E. Mitochondria) is intact. Conversely, once the mitochondria are deranged, energy failure occurs even in the presence of normoxia. The lactate increase in critically ill patients may, therefore, be viewed as an early marker of a potentially reversible state (PMID: 16356243 ). When present in sufficiently high levels, lactic acid can act as an oncometabolite, an immunosuppressant, an acidogen, and a metabotoxin. An oncometabolite is a compound that promotes tumor growth and survival. An immunosuppressant reduces or arrests the activity of the immune system. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of lactic acid are associated with at least a dozen inborn errors of metabolism, including 2-methyl-3-hydroxybutyryl CoA dehydrogenase deficiency, biotinidase deficiency, fructose-1,6-diphosphatase deficiency, glycogen storage disease type 1A (GSD1A) or Von Gierke disease, glycogenosis type IB, glycogenosis type IC, glycogenosis type VI, Hers disease, lactic acidemia, Leigh syndrome, methylmalonate semialdehyde dehydrogenase deficiency, pyruvate decarboxylase E1 component deficiency, pyruvate dehydrogenase complex deficiency, pyruvate dehydrogenase deficiency, and short chain acyl CoA dehydrogenase deficiency (SCAD deficiency). Locally high concentrations of lactic acid or lactate are found near many tumors due to the upregulation of lactate dehydrogenase (PMID: 15279558 ). Lactic acid produced by tumors through aerobic glycolysis acts as an immunosuppressant and tumor promoter (PMID: 23729358 ). Indeed, lactic acid has been found to be a key player or regulator in the development and malignant progression of a variety of cancers (PMID: 22084445 ). A number of studies have demonstrated that malignant transformation is associated with an increase in aerobic cellular lactate excretion. Lactate concentrations in various carcinomas (e.G. Uterine cervix, head and neck, colorectal region) at first diagnosis of the disease, can be relatively low or extremely high (up to 40 µmol/g) in different individual tumors or within the same lesion (PMID: 15279558 ). High molar concentrations of lactate are correlated with a high incidence of distant metastasis. Low lactate tumors (< median of approximately 8 µmol/g) are associated with both an overall longer and disease-free survival compared to high lactate lesions (lactate > approximately 8 µmol/g). Lactate-induced secretion of hyaluronan by tumor-associated fibroblasts creates a milieu favourable for cell migration and metastases (PMID: 22084445 ). An acidic environment (pH 6-6.5), Which is common in many tumors, allows tumor cells to evade the immune response, and therefore allows them to grow unchecked. Locally high concentrations of lactic acid are known to markedly impede the function of normal immune cells and will lead to a loss of T-cell function of human tumor-infiltrating lymphocytes (PMID: 22084445 ). Lactic acid is also an organic acid and acts as a general acidogen. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, kidney abnormalities, liver damage, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development.
Structure
Thumb
Synonyms
ValueSource
(+)-Lactic acidChEBI
(S)-(+)-Lactic acidChEBI
(S)-2-Hydroxypropanoic acidChEBI
(S)-2-Hydroxypropionic acidChEBI
L-(+)-alpha-Hydroxypropionic acidChEBI
L-(+)-Lactic acidChEBI
L-MilchsaeureChEBI
L-LactateKegg
(+)-LactateGenerator
(S)-(+)-LactateGenerator
(S)-2-HydroxypropanoateGenerator
(S)-2-HydroxypropionateGenerator
L-(+)-a-HydroxypropionateGenerator
L-(+)-a-Hydroxypropionic acidGenerator
L-(+)-alpha-HydroxypropionateGenerator
L-(+)-Α-hydroxypropionateGenerator
L-(+)-Α-hydroxypropionic acidGenerator
L-(+)-LactateGenerator
(alpha)-LactateHMDB
(alpha)-Lactic acidHMDB
(S)-(+)-2-HydroxypropanoateHMDB
(S)-(+)-2-Hydroxypropanoic acidHMDB
(S)-2-Hydroxy-propanoateHMDB
(S)-2-Hydroxy-propanoic acidHMDB
(S)-LactateHMDB
(S)-Lactic acidHMDB
1-Hydroxyethane 1-carboxylateHMDB
1-Hydroxyethane 1-carboxylic acidHMDB
1-HydroxyethanecarboxylateHMDB
1-Hydroxyethanecarboxylic acidHMDB
2-HydroxypropanoateHMDB
2-Hydroxypropanoic acidHMDB
2-HydroxypropionateHMDB
a-HydroxypropanoateHMDB
a-Hydroxypropanoic acidHMDB
a-HydroxypropionateHMDB
a-Hydroxypropionic acidHMDB
alpha-HydroxypropanoateHMDB
alpha-Hydroxypropanoic acidHMDB
alpha-HydroxypropionateHMDB
alpha-Hydroxypropionic acidHMDB
L-(+)- Lactic acidHMDB
L-2-HydroxypropanoateHMDB
L-2-Hydroxypropanoic acidHMDB
LactateHMDB
Lactic acidHMDB
Milk acidHMDB
Sarcolactic acidHMDB
2-Hydroxypropionic acidHMDB
D-Lactic acidHMDB
D Lactic acidHMDB
Lactate, ammoniumHMDB
2 Hydroxypropanoic acidHMDB
2 Hydroxypropionic acidHMDB
Ammonium lactateHMDB
L Lactic acidHMDB
D-LactateHMDB
L-Lactic acidChEBI
Chemical FormulaC3H6O3
Average Mass90.0779 Da
Monoisotopic Mass90.03169 Da
IUPAC Name(2S)-2-hydroxypropanoic acid
Traditional Name(α)-lactate
CAS Registry Number79-33-4
SMILES
[H][C@@](C)(O)C(O)=O
InChI Identifier
InChI=1S/C3H6O3/c1-2(4)3(5)6/h2,4H,1H3,(H,5,6)/t2-/m0/s1
InChI KeyJVTAAEKCZFNVCJ-REOHCLBHSA-N
Experimental Spectra
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, experimental)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
2D NMR[1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Predicted Spectra
Not Available
Chemical Shift Submissions
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 400 MHz, H2O, simulated)varshavi.d26@gmail.comNot AvailableNot Available2021-07-29View Spectrum
Species
Species of Origin
Species NameSourceReference
Arabidopsis thalianaKNApSAcK Database
Cannabis sativaCannabisDB
      Not Available
Digitalis purpureaKNApSAcK Database
Lates calcariferLOTUS Database
Pogostemon cablinLOTUS Database
Salmonella entericaLOTUS Database
Streptomyces anulatusLOTUS Database
Species Where Detected
Species NameSourceReference
Escherichia coliKNApSAcK Database
Homo sapiens (Serum)KNApSAcK Database
Homo sapiens (Urine)KNApSAcK Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as alpha hydroxy acids and derivatives. These are organic compounds containing a carboxylic acid substituted with a hydroxyl group on the adjacent carbon.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassHydroxy acids and derivatives
Sub ClassAlpha hydroxy acids and derivatives
Direct ParentAlpha hydroxy acids and derivatives
Alternative Parents
Substituents
  • Alpha-hydroxy acid
  • Secondary alcohol
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Carboxylic acid derivative
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Alcohol
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Physical Properties
StateLiquid
Experimental Properties
PropertyValueReference
Melting Point16.8 °CNot Available
Boiling Point227.56 °C. @ 760.00 mm Hg (est)The Good Scents Company Information System
Water Solubility1000000 mg/L @ 25 °C (est)The Good Scents Company Information System
LogP-0.850 (est)The Good Scents Company Information System
Predicted Properties
PropertyValueSource
Water Solubility562 g/LALOGPS
logP-0.47ChemAxon
pKa (Strongest Acidic)3.78ChemAxon
pKa (Strongest Basic)-3.7ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area57.53 ŲChemAxon
Rotatable Bond Count1ChemAxon
Refractivity18.84 m³·mol⁻¹ChemAxon
Polarizability8.06 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDHMDB0000190
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB003293
KNApSAcK IDC00001191
Chemspider ID96860
KEGG Compound IDC00186
BioCyc IDL-LACTATE
BiGG ID34179
Wikipedia LinkLactic_Acid
METLIN ID5205
PubChem Compound107689
PDB IDNot Available
ChEBI ID422
Good Scents IDrw1107811
References
General References
  1. Hoffmann GF, Meier-Augenstein W, Stockler S, Surtees R, Rating D, Nyhan WL: Physiology and pathophysiology of organic acids in cerebrospinal fluid. J Inherit Metab Dis. 1993;16(4):648-69. [PubMed:8412012 ]
  2. Silwood CJ, Lynch E, Claxson AW, Grootveld MC: 1H and (13)C NMR spectroscopic analysis of human saliva. J Dent Res. 2002 Jun;81(6):422-7. [PubMed:12097436 ]
  3. Subramanian A, Gupta A, Saxena S, Gupta A, Kumar R, Nigam A, Kumar R, Mandal SK, Roy R: Proton MR CSF analysis and a new software as predictors for the differentiation of meningitis in children. NMR Biomed. 2005 Jun;18(4):213-25. [PubMed:15627241 ]
  4. Commodari F, Arnold DL, Sanctuary BC, Shoubridge EA: 1H NMR characterization of normal human cerebrospinal fluid and the detection of methylmalonic acid in a vitamin B12 deficient patient. NMR Biomed. 1991 Aug;4(4):192-200. [PubMed:1931558 ]
  5. Nakayama Y, Kinoshita A, Tomita M: Dynamic simulation of red blood cell metabolism and its application to the analysis of a pathological condition. Theor Biol Med Model. 2005 May 9;2:18. [PubMed:15882454 ]
  6. Zupke C, Sinskey AJ, Stephanopoulos G: Intracellular flux analysis applied to the effect of dissolved oxygen on hybridomas. Appl Microbiol Biotechnol. 1995 Dec;44(1-2):27-36. [PubMed:8579834 ]
  7. Nicholson JK, Buckingham MJ, Sadler PJ: High resolution 1H n.m.r. studies of vertebrate blood and plasma. Biochem J. 1983 Jun 1;211(3):605-15. [PubMed:6411064 ]
  8. Redjems-Bennani N, Jeandel C, Lefebvre E, Blain H, Vidailhet M, Gueant JL: Abnormal substrate levels that depend upon mitochondrial function in cerebrospinal fluid from Alzheimer patients. Gerontology. 1998;44(5):300-4. [PubMed:9693263 ]
  9. Bairaktari E, Katopodis K, Siamopoulos KC, Tsolas O: Paraquat-induced renal injury studied by 1H nuclear magnetic resonance spectroscopy of urine. Clin Chem. 1998 Jun;44(6 Pt 1):1256-61. [PubMed:9625050 ]
  10. Wevers RA, Engelke U, Wendel U, de Jong JG, Gabreels FJ, Heerschap A: Standardized method for high-resolution 1H-NMR of cerebrospinal fluid. Clin Chem. 1995 May;41(5):744-51. [PubMed:7729054 ]
  11. Khan SA, Cox IJ, Hamilton G, Thomas HC, Taylor-Robinson SD: In vivo and in vitro nuclear magnetic resonance spectroscopy as a tool for investigating hepatobiliary disease: a review of H and P MRS applications. Liver Int. 2005 Apr;25(2):273-81. [PubMed:15780050 ]
  12. Kaya M, Moriwaki Y, Ka T, Inokuchi T, Yamamoto A, Takahashi S, Tsutsumi Z, Tsuzita J, Oku Y, Yamamoto T: Plasma concentrations and urinary excretion of purine bases (uric acid, hypoxanthine, and xanthine) and oxypurinol after rigorous exercise. Metabolism. 2006 Jan;55(1):103-7. [PubMed:16324927 ]
  13. Nielsen J, Ytrebo LM, Borud O: Lactate and pyruvate concentrations in capillary blood from newborns. Acta Paediatr. 1994 Sep;83(9):920-2. [PubMed:7819686 ]
  14. Isotalo T, Talja M, Hellstrom P, Perttila I, Valimaa T, Tormala P, Tammela TL: A double-blind, randomized, placebo-controlled pilot study to investigate the effects of finasteride combined with a biodegradable self-reinforced poly L-lactic acid spiral stent in patients with urinary retention caused by bladder outlet obstruction from benign prostatic hyperplasia. BJU Int. 2001 Jul;88(1):30-4. [PubMed:11446841 ]
  15. Shirai Y, Kamimura K, Seki T, Morohashi M: L-lactic acid as a mosquito (Diptera: Culicidae) repellent on human and mouse skin. J Med Entomol. 2001 Jan;38(1):51-4. [PubMed:11268691 ]
  16. Valenza F, Aletti G, Fossali T, Chevallard G, Sacconi F, Irace M, Gattinoni L: Lactate as a marker of energy failure in critically ill patients: hypothesis. Crit Care. 2005;9(6):588-93. Epub 2005 Sep 28. [PubMed:16356243 ]
  17. Walenta S, Schroeder T, Mueller-Klieser W: Lactate in solid malignant tumors: potential basis of a metabolic classification in clinical oncology. Curr Med Chem. 2004 Aug;11(16):2195-204. [PubMed:15279558 ]
  18. Choi SY, Collins CC, Gout PW, Wang Y: Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite? J Pathol. 2013 Aug;230(4):350-5. doi: 10.1002/path.4218. [PubMed:23729358 ]
  19. Hirschhaeuser F, Sattler UG, Mueller-Klieser W: Lactate: a metabolic key player in cancer. Cancer Res. 2011 Nov 15;71(22):6921-5. doi: 10.1158/0008-5472.CAN-11-1457. [PubMed:22084445 ]