Record Information |
---|
Version | 2.0 |
---|
Created at | 2005-11-16 15:48:42 UTC |
---|
Updated at | 2021-08-19 23:58:09 UTC |
---|
NP-MRD ID | NP0000480 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | L-Lactic acid |
---|
Description | Lactic acid is an organic acid. It is a chiral molecule, consisting of two optical isomers, L-lactic acid and D-lactic acid, with the L-isomer being the most common in living organisms. Lactic acid plays a role in several biochemical processes and is produced in the muscles during intense activity. In animals, L-lactate is constantly produced from pyruvate via the enzyme lactate dehydrogenase (LDH) in a process of fermentation during normal metabolism and exercise. It does not increase in concentration until the rate of lactate production exceeds the rate of lactate removal. This is governed by a number of factors, including monocarboxylate transporters, lactate concentration, the isoform of LDH, and oxidative capacity of tissues. The concentration of blood lactate is usually 1-2 mmol/L at rest, but can rise to over 20 mmol/L during intense exertion. There are some indications that lactate, and not glucose, is preferentially metabolized by neurons in the brain of several mammalian species, including mice, rats, and humans. Glial cells, using the lactate shuttle, are responsible for transforming glucose into lactate, and for providing lactate to the neurons. Lactate measurement in critically ill patients has been traditionally used to stratify patients with poor outcomes. However, plasma lactate levels are the result of a finely tuned interplay of factors that affect the balance between its production and its clearance. When the oxygen supply does not match its consumption, organisms adapt in many different ways, up to the point when energy failure occurs. Lactate, being part of the adaptive response, may then be used to assess the severity of the supply/demand imbalance. In such a scenario, the time to intervention becomes relevant: Early and effective treatment may allow tissues and cells to revert to a normal state, as long as the oxygen machinery (i.E. Mitochondria) is intact. Conversely, once the mitochondria are deranged, energy failure occurs even in the presence of normoxia. The lactate increase in critically ill patients may, therefore, be viewed as an early marker of a potentially reversible state (PMID: 16356243 ). When present in sufficiently high levels, lactic acid can act as an oncometabolite, an immunosuppressant, an acidogen, and a metabotoxin. An oncometabolite is a compound that promotes tumor growth and survival. An immunosuppressant reduces or arrests the activity of the immune system. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of lactic acid are associated with at least a dozen inborn errors of metabolism, including 2-methyl-3-hydroxybutyryl CoA dehydrogenase deficiency, biotinidase deficiency, fructose-1,6-diphosphatase deficiency, glycogen storage disease type 1A (GSD1A) or Von Gierke disease, glycogenosis type IB, glycogenosis type IC, glycogenosis type VI, Hers disease, lactic acidemia, Leigh syndrome, methylmalonate semialdehyde dehydrogenase deficiency, pyruvate decarboxylase E1 component deficiency, pyruvate dehydrogenase complex deficiency, pyruvate dehydrogenase deficiency, and short chain acyl CoA dehydrogenase deficiency (SCAD deficiency). Locally high concentrations of lactic acid or lactate are found near many tumors due to the upregulation of lactate dehydrogenase (PMID: 15279558 ). Lactic acid produced by tumors through aerobic glycolysis acts as an immunosuppressant and tumor promoter (PMID: 23729358 ). Indeed, lactic acid has been found to be a key player or regulator in the development and malignant progression of a variety of cancers (PMID: 22084445 ). A number of studies have demonstrated that malignant transformation is associated with an increase in aerobic cellular lactate excretion. Lactate concentrations in various carcinomas (e.G. Uterine cervix, head and neck, colorectal region) at first diagnosis of the disease, can be relatively low or extremely high (up to 40 µmol/g) in different individual tumors or within the same lesion (PMID: 15279558 ). High molar concentrations of lactate are correlated with a high incidence of distant metastasis. Low lactate tumors (< median of approximately 8 µmol/g) are associated with both an overall longer and disease-free survival compared to high lactate lesions (lactate > approximately 8 µmol/g). Lactate-induced secretion of hyaluronan by tumor-associated fibroblasts creates a milieu favourable for cell migration and metastases (PMID: 22084445 ). An acidic environment (pH 6-6.5), Which is common in many tumors, allows tumor cells to evade the immune response, and therefore allows them to grow unchecked. Locally high concentrations of lactic acid are known to markedly impede the function of normal immune cells and will lead to a loss of T-cell function of human tumor-infiltrating lymphocytes (PMID: 22084445 ). Lactic acid is also an organic acid and acts as a general acidogen. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, kidney abnormalities, liver damage, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. |
---|
Structure | InChI=1S/C3H6O3/c1-2(4)3(5)6/h2,4H,1H3,(H,5,6)/t2-/m0/s1 |
---|
Synonyms | Value | Source |
---|
(+)-Lactic acid | ChEBI | (S)-(+)-Lactic acid | ChEBI | (S)-2-Hydroxypropanoic acid | ChEBI | (S)-2-Hydroxypropionic acid | ChEBI | L-(+)-alpha-Hydroxypropionic acid | ChEBI | L-(+)-Lactic acid | ChEBI | L-Milchsaeure | ChEBI | L-Lactate | Kegg | (+)-Lactate | Generator | (S)-(+)-Lactate | Generator | (S)-2-Hydroxypropanoate | Generator | (S)-2-Hydroxypropionate | Generator | L-(+)-a-Hydroxypropionate | Generator | L-(+)-a-Hydroxypropionic acid | Generator | L-(+)-alpha-Hydroxypropionate | Generator | L-(+)-Α-hydroxypropionate | Generator | L-(+)-Α-hydroxypropionic acid | Generator | L-(+)-Lactate | Generator | (alpha)-Lactate | HMDB | (alpha)-Lactic acid | HMDB | (S)-(+)-2-Hydroxypropanoate | HMDB | (S)-(+)-2-Hydroxypropanoic acid | HMDB | (S)-2-Hydroxy-propanoate | HMDB | (S)-2-Hydroxy-propanoic acid | HMDB | (S)-Lactate | HMDB | (S)-Lactic acid | HMDB | 1-Hydroxyethane 1-carboxylate | HMDB | 1-Hydroxyethane 1-carboxylic acid | HMDB | 1-Hydroxyethanecarboxylate | HMDB | 1-Hydroxyethanecarboxylic acid | HMDB | 2-Hydroxypropanoate | HMDB | 2-Hydroxypropanoic acid | HMDB | 2-Hydroxypropionate | HMDB | a-Hydroxypropanoate | HMDB | a-Hydroxypropanoic acid | HMDB | a-Hydroxypropionate | HMDB | a-Hydroxypropionic acid | HMDB | alpha-Hydroxypropanoate | HMDB | alpha-Hydroxypropanoic acid | HMDB | alpha-Hydroxypropionate | HMDB | alpha-Hydroxypropionic acid | HMDB | L-(+)- Lactic acid | HMDB | L-2-Hydroxypropanoate | HMDB | L-2-Hydroxypropanoic acid | HMDB | Lactate | HMDB | Lactic acid | HMDB | Milk acid | HMDB | Sarcolactic acid | HMDB | 2-Hydroxypropionic acid | HMDB | D-Lactic acid | HMDB | D Lactic acid | HMDB | Lactate, ammonium | HMDB | 2 Hydroxypropanoic acid | HMDB | 2 Hydroxypropionic acid | HMDB | Ammonium lactate | HMDB | L Lactic acid | HMDB | D-Lactate | HMDB | L-Lactic acid | ChEBI |
|
---|
Chemical Formula | C3H6O3 |
---|
Average Mass | 90.0779 Da |
---|
Monoisotopic Mass | 90.03169 Da |
---|
IUPAC Name | (2S)-2-hydroxypropanoic acid |
---|
Traditional Name | (α)-lactate |
---|
CAS Registry Number | 79-33-4 |
---|
SMILES | [H][C@@](C)(O)C(O)=O |
---|
InChI Identifier | InChI=1S/C3H6O3/c1-2(4)3(5)6/h2,4H,1H3,(H,5,6)/t2-/m0/s1 |
---|
InChI Key | JVTAAEKCZFNVCJ-REOHCLBHSA-N |
---|
Experimental Spectra |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Predicted Spectra |
---|
|
| Not Available | Chemical Shift Submissions |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 400 MHz, H2O, simulated) | varshavi.d26@gmail.com | Not Available | Not Available | 2021-07-29 | View Spectrum |
| Species |
---|
Species of Origin | |
---|
Species Where Detected | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as alpha hydroxy acids and derivatives. These are organic compounds containing a carboxylic acid substituted with a hydroxyl group on the adjacent carbon. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organic acids and derivatives |
---|
Class | Hydroxy acids and derivatives |
---|
Sub Class | Alpha hydroxy acids and derivatives |
---|
Direct Parent | Alpha hydroxy acids and derivatives |
---|
Alternative Parents | |
---|
Substituents | - Alpha-hydroxy acid
- Secondary alcohol
- Monocarboxylic acid or derivatives
- Carboxylic acid
- Carboxylic acid derivative
- Organic oxygen compound
- Organic oxide
- Hydrocarbon derivative
- Organooxygen compound
- Carbonyl group
- Alcohol
- Aliphatic acyclic compound
|
---|
Molecular Framework | Aliphatic acyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Liquid |
---|
Experimental Properties | |
---|
Predicted Properties | |
---|
General References | - Hoffmann GF, Meier-Augenstein W, Stockler S, Surtees R, Rating D, Nyhan WL: Physiology and pathophysiology of organic acids in cerebrospinal fluid. J Inherit Metab Dis. 1993;16(4):648-69. [PubMed:8412012 ]
- Subramanian A, Gupta A, Saxena S, Gupta A, Kumar R, Nigam A, Kumar R, Mandal SK, Roy R: Proton MR CSF analysis and a new software as predictors for the differentiation of meningitis in children. NMR Biomed. 2005 Jun;18(4):213-25. [PubMed:15627241 ]
- Commodari F, Arnold DL, Sanctuary BC, Shoubridge EA: 1H NMR characterization of normal human cerebrospinal fluid and the detection of methylmalonic acid in a vitamin B12 deficient patient. NMR Biomed. 1991 Aug;4(4):192-200. [PubMed:1931558 ]
- Redjems-Bennani N, Jeandel C, Lefebvre E, Blain H, Vidailhet M, Gueant JL: Abnormal substrate levels that depend upon mitochondrial function in cerebrospinal fluid from Alzheimer patients. Gerontology. 1998;44(5):300-4. [PubMed:9693263 ]
- Wevers RA, Engelke U, Wendel U, de Jong JG, Gabreels FJ, Heerschap A: Standardized method for high-resolution 1H-NMR of cerebrospinal fluid. Clin Chem. 1995 May;41(5):744-51. [PubMed:7729054 ]
- Kaya M, Moriwaki Y, Ka T, Inokuchi T, Yamamoto A, Takahashi S, Tsutsumi Z, Tsuzita J, Oku Y, Yamamoto T: Plasma concentrations and urinary excretion of purine bases (uric acid, hypoxanthine, and xanthine) and oxypurinol after rigorous exercise. Metabolism. 2006 Jan;55(1):103-7. [PubMed:16324927 ]
- Nielsen J, Ytrebo LM, Borud O: Lactate and pyruvate concentrations in capillary blood from newborns. Acta Paediatr. 1994 Sep;83(9):920-2. [PubMed:7819686 ]
- Isotalo T, Talja M, Hellstrom P, Perttila I, Valimaa T, Tormala P, Tammela TL: A double-blind, randomized, placebo-controlled pilot study to investigate the effects of finasteride combined with a biodegradable self-reinforced poly L-lactic acid spiral stent in patients with urinary retention caused by bladder outlet obstruction from benign prostatic hyperplasia. BJU Int. 2001 Jul;88(1):30-4. [PubMed:11446841 ]
- Shirai Y, Kamimura K, Seki T, Morohashi M: L-lactic acid as a mosquito (Diptera: Culicidae) repellent on human and mouse skin. J Med Entomol. 2001 Jan;38(1):51-4. [PubMed:11268691 ]
- Valenza F, Aletti G, Fossali T, Chevallard G, Sacconi F, Irace M, Gattinoni L: Lactate as a marker of energy failure in critically ill patients: hypothesis. Crit Care. 2005;9(6):588-93. Epub 2005 Sep 28. [PubMed:16356243 ]
- Walenta S, Schroeder T, Mueller-Klieser W: Lactate in solid malignant tumors: potential basis of a metabolic classification in clinical oncology. Curr Med Chem. 2004 Aug;11(16):2195-204. [PubMed:15279558 ]
- Choi SY, Collins CC, Gout PW, Wang Y: Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite? J Pathol. 2013 Aug;230(4):350-5. doi: 10.1002/path.4218. [PubMed:23729358 ]
- Hirschhaeuser F, Sattler UG, Mueller-Klieser W: Lactate: a metabolic key player in cancer. Cancer Res. 2011 Nov 15;71(22):6921-5. doi: 10.1158/0008-5472.CAN-11-1457. [PubMed:22084445 ]
|
---|