Record Information |
---|
Version | 2.0 |
---|
Created at | 2005-11-16 15:48:42 UTC |
---|
Updated at | 2024-09-17 15:41:56 UTC |
---|
NP-MRD ID | NP0000461 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | Taurocholic acid |
---|
Description | Taurocholic acid is a bile acid and is the product of the conjugation of cholic acid with taurine. Its sodium salt is the chief ingredient of the bile of carnivorous animals. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine, and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH, and consequently require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.G. Membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487 , 16037564 , 12576301 , 11907135 ). Taurocholic acid, as with all bile acids, acts as a detergent to solubilize fats for absorption and is itself absorbed. It is used as a cholagogue and choleretic (a bile purging agent). Hydrolysis of taurocholic acid yields taurine, a nonessential amino acid. Taurocholic acid is one of the main components of urinary nonsulfated bile acids in biliary atresia. Raised levels of taurocholate in fetal serum in obstetric cholestasis may result in the development of a fetal dysrhythmia and sudden intra-uterine death (PMID: 3944741 , 11256973 ). |
---|
Structure | [H][C@@]1(CC[C@@]2([H])[C@]3([H])[C@H](O)C[C@]4([H])C[C@H](O)CC[C@]4(C)[C@@]3([H])C[C@H](O)[C@]12C)[C@H](C)CCC(=O)NCCS(O)(=O)=O InChI=1S/C26H45NO7S/c1-15(4-7-23(31)27-10-11-35(32,33)34)18-5-6-19-24-20(14-22(30)26(18,19)3)25(2)9-8-17(28)12-16(25)13-21(24)29/h15-22,24,28-30H,4-14H2,1-3H3,(H,27,31)(H,32,33,34)/t15-,16+,17-,18-,19+,20+,21-,22+,24+,25+,26-/m1/s1 |
---|
Synonyms | Value | Source |
---|
3alpha,7alpha,12alpha-Trihydroxy-5beta-cholanic acid 24-taurine | ChEBI | Cholic acid taurine conjugate | ChEBI | Choloyl-taurine | ChEBI | Cholyltaurine | ChEBI | N-Choloyltaurine | ChEBI | Taurocholate | ChEBI | 3a,7a,12a-Trihydroxy-5b-cholanate 24-taurine | Generator | 3a,7a,12a-Trihydroxy-5b-cholanic acid 24-taurine | Generator | 3alpha,7alpha,12alpha-Trihydroxy-5beta-cholanate 24-taurine | Generator | 3Α,7α,12α-trihydroxy-5β-cholanate 24-taurine | Generator | 3Α,7α,12α-trihydroxy-5β-cholanic acid 24-taurine | Generator | Cholate taurine conjugate | Generator | Cholic acid taurine conjugic acid | Generator | Cholaic acid | HMDB | Cholaate | HMDB | Taurine cholate | HMDB | Taurocholic acid, (7 beta)-isomer | HMDB | Taurocholic acid, (5 alpha)-isomer | HMDB |
|
---|
Chemical Formula | C26H45NO7S |
---|
Average Mass | 515.7030 Da |
---|
Monoisotopic Mass | 515.29167 Da |
---|
IUPAC Name | 2-[(4R)-4-[(1S,2S,5R,7S,9R,10R,11S,14R,15R,16S)-5,9,16-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]pentanamido]ethane-1-sulfonic acid |
---|
Traditional Name | 2-[(4R)-4-[(1S,2S,5R,7S,9R,10R,11S,14R,15R,16S)-5,9,16-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]pentanamido]ethanesulfonic acid |
---|
CAS Registry Number | 81-24-3 |
---|
SMILES | [H][C@@]1(CC[C@@]2([H])[C@]3([H])[C@H](O)C[C@]4([H])C[C@H](O)CC[C@]4(C)[C@@]3([H])C[C@H](O)[C@]12C)[C@H](C)CCC(=O)NCCS(O)(=O)=O |
---|
InChI Identifier | InChI=1S/C26H45NO7S/c1-15(4-7-23(31)27-10-11-35(32,33)34)18-5-6-19-24-20(14-22(30)26(18,19)3)25(2)9-8-17(28)12-16(25)13-21(24)29/h15-22,24,28-30H,4-14H2,1-3H3,(H,27,31)(H,32,33,34)/t15-,16+,17-,18-,19+,20+,21-,22+,24+,25+,26-/m1/s1 |
---|
InChI Key | WBWWGRHZICKQGZ-HZAMXZRMSA-N |
---|
Experimental Spectra |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, 100%_DMSO, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as trihydroxy bile acids, alcohols and derivatives. These are prenol lipids structurally characterized by a bile acid or alcohol which bears three hydroxyl groups. |
---|
Kingdom | Organic compounds |
---|
Super Class | Lipids and lipid-like molecules |
---|
Class | Steroids and steroid derivatives |
---|
Sub Class | Bile acids, alcohols and derivatives |
---|
Direct Parent | Trihydroxy bile acids, alcohols and derivatives |
---|
Alternative Parents | |
---|
Substituents | - Trihydroxy bile acid, alcohol, or derivatives
- 3-hydroxysteroid
- 12-hydroxysteroid
- Hydroxysteroid
- 3-alpha-hydroxysteroid
- 7-hydroxysteroid
- Cyclic alcohol
- Organic sulfonic acid or derivatives
- Organosulfonic acid or derivatives
- Organosulfonic acid
- Sulfonyl
- Alkanesulfonic acid
- Secondary alcohol
- Carboximidic acid
- Polyol
- Carboximidic acid derivative
- Organic 1,3-dipolar compound
- Propargyl-type 1,3-dipolar organic compound
- Alcohol
- Organosulfur compound
- Organooxygen compound
- Organonitrogen compound
- Organopnictogen compound
- Organic oxygen compound
- Organic oxide
- Hydrocarbon derivative
- Organic nitrogen compound
- Aliphatic homopolycyclic compound
|
---|
Molecular Framework | Aliphatic homopolycyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Properties | |
---|
Predicted Properties | |
---|
General References | - van Montfoort JE, Muller M, Groothuis GM, Meijer DK, Koepsell H, Meier PJ: Comparison of "type I" and "type II" organic cation transport by organic cation transporters and organic anion-transporting polypeptides. J Pharmacol Exp Ther. 2001 Jul;298(1):110-5. [PubMed:11408531 ]
- Rius M, Nies AT, Hummel-Eisenbeiss J, Jedlitschky G, Keppler D: Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology. 2003 Aug;38(2):374-84. [PubMed:12883481 ]
- Hoekman MF, Rientjes JM, Twisk J, Planta RJ, Princen HM, Mager WH: Transcriptional regulation of the gene encoding cholesterol 7 alpha-hydroxylase in the rat. Gene. 1993 Aug 25;130(2):217-23. [PubMed:8359688 ]
- Sandker GW, Weert B, Olinga P, Wolters H, Slooff MJ, Meijer DK, Groothuis GM: Characterization of transport in isolated human hepatocytes. A study with the bile acid taurocholic acid, the uncharged ouabain and the organic cations vecuronium and rocuronium. Biochem Pharmacol. 1994 Jun 15;47(12):2193-200. [PubMed:7913319 ]
- Kullak-Ublick GA, Glasa J, Boker C, Oswald M, Grutzner U, Hagenbuch B, Stieger B, Meier PJ, Beuers U, Kramer W, Wess G, Paumgartner G: Chlorambucil-taurocholate is transported by bile acid carriers expressed in human hepatocellular carcinomas. Gastroenterology. 1997 Oct;113(4):1295-305. [PubMed:9322525 ]
- Claudel T, Inoue Y, Barbier O, Duran-Sandoval D, Kosykh V, Fruchart J, Fruchart JC, Gonzalez FJ, Staels B: Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Gastroenterology. 2003 Aug;125(2):544-55. [PubMed:12891557 ]
- Rizzo G, Renga B, Mencarelli A, Pellicciari R, Fiorucci S: Role of FXR in regulating bile acid homeostasis and relevance for human diseases. Curr Drug Targets Immune Endocr Metabol Disord. 2005 Sep;5(3):289-303. [PubMed:16178789 ]
- Duan RD, Cheng Y, Tauschel HD, Nilsson A: Effects of ursodeoxycholate and other bile salts on levels of rat intestinal alkaline sphingomyelinase: a potential implication in tumorigenesis. Dig Dis Sci. 1998 Jan;43(1):26-32. [PubMed:9508530 ]
- Akao T: Influence of various bile acids on the metabolism of glycyrrhizin and glycyrrhetic acid by Ruminococcus sp. PO1-3 of human intestinal bacteria. Biol Pharm Bull. 1999 Aug;22(8):787-93. [PubMed:10480314 ]
- Jigorel E, Le Vee M, Boursier-Neyret C, Bertrand M, Fardel O: Functional expression of sinusoidal drug transporters in primary human and rat hepatocytes. Drug Metab Dispos. 2005 Oct;33(10):1418-22. Epub 2005 Jul 13. [PubMed:16014767 ]
- Zahner D, Eckhardt U, Petzinger E: Transport of taurocholate by mutants of negatively charged amino acids, cysteines, and threonines of the rat liver sodium-dependent taurocholate cotransporting polypeptide Ntcp. Eur J Biochem. 2003 Mar;270(6):1117-27. [PubMed:12631271 ]
- Wang LF, Luo H, Miyoshi M, Imoto T, Hiji Y, Sasaki T: Inhibitory effect of gymnemic acid on intestinal absorption of oleic acid in rats. Can J Physiol Pharmacol. 1998 Oct-Nov;76(10-11):1017-23. [PubMed:10100884 ]
- Yamamoto Y, Moore R, Hess HA, Guo GL, Gonzalez FJ, Korach KS, Maronpot RR, Negishi M: Estrogen receptor alpha mediates 17alpha-ethynylestradiol causing hepatotoxicity. J Biol Chem. 2006 Jun 16;281(24):16625-31. Epub 2006 Apr 10. [PubMed:16606610 ]
- Kwekkeboom J, Princen HM, van Voorthuizen EM, Meijer P, Kempen HJ: Comparison of taurocholate accumulation in cultured hepatocytes of pig, rat and man. Biochem Biophys Res Commun. 1989 Jul 31;162(2):619-25. [PubMed:2757635 ]
- Claudel T, Sturm E, Duez H, Torra IP, Sirvent A, Kosykh V, Fruchart JC, Dallongeville J, Hum DW, Kuipers F, Staels B: Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element. J Clin Invest. 2002 Apr;109(7):961-71. [PubMed:11927623 ]
- Johnson RC, Shah SN: Cholesterol ester hydrolase(s) in mammalian brain: is there a myelin-specific cholesterol ester hydrolase? Neurochem Res. 1986 Nov;11(11):1571-82. [PubMed:3683732 ]
- Balakrishnan A, Sussman DJ, Polli JE: Development of stably transfected monolayer overexpressing the human apical sodium-dependent bile acid transporter (hASBT). Pharm Res. 2005 Aug;22(8):1269-80. Epub 2005 Aug 3. [PubMed:16078136 ]
- Nittono H, Obinata K, Nakatsu N, Watanabe T, Niijima S, Sasaki H, Arisaka O, Kato H, Yabuta K, Miyano T: Sulfated and nonsulfated bile acids in urine of patients with biliary atresia: analysis of bile acids by high-performance liquid chromatography. J Pediatr Gastroenterol Nutr. 1986 Jan;5(1):23-9. [PubMed:3944741 ]
- Williamson C, Gorelik J, Eaton BM, Lab M, de Swiet M, Korchev Y: The bile acid taurocholate impairs rat cardiomyocyte function: a proposed mechanism for intra-uterine fetal death in obstetric cholestasis. Clin Sci (Lond). 2001 Apr;100(4):363-9. [PubMed:11256973 ]
- Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.
|
---|