Record Information |
---|
Version | 2.0 |
---|
Created at | 2006-05-22 15:12:01 UTC |
---|
Updated at | 2024-09-17 15:41:52 UTC |
---|
NP-MRD ID | NP0000417 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | Erythrose |
---|
Description | Erythrose is a tetrose saccharide with the chemical formula C4H8O4. It has one aldehyde group, and is thus part of the aldose family. The natural isomer is D-erythrose. It is a member of the class of compounds known as pentoses. Pentoses are monosaccharides in which the carbohydrate moiety contains five carbon atoms. Erythrose is very soluble (in water). Erythrose can be found in blood, as well as in human cartilage tissue. Within the cell, erythrose is primarily located in the cytoplasm (predicted from logP). Erythrose exists in all living organisms, ranging from bacteria to humans. Erythrose is found to be associated with schizophrenia. Erythrose was first isolated in 1849 from rhubarb by the French pharmacist Louis Feux Joseph Garot (1798-1869) and was named as such because of its red hue in the presence of alkali metals. |
---|
Structure | [H][C@@]1(O)COC([H])(O)[C@]1([H])O InChI=1S/C4H8O4/c5-2-1-8-4(7)3(2)6/h2-7H,1H2/t2-,3-,4?/m1/s1 |
---|
Synonyms | Value | Source |
---|
(R*,r*)-2,3,4-trihydroxybutanal | HMDB | D-Erythro-tetrose | HMDB | D-Erythrose | HMDB | L-Threo-aldose | HMDB | L-Threose | HMDB | LTr | HMDB | Threose | HMDB |
|
---|
Chemical Formula | C4H8O4 |
---|
Average Mass | 120.1039 Da |
---|
Monoisotopic Mass | 120.04226 Da |
---|
IUPAC Name | (3R,4R)-oxolane-2,3,4-triol |
---|
Traditional Name | D-erythro-tetrose |
---|
CAS Registry Number | 1758-51-6 |
---|
SMILES | [H][C@@]1(O)COC([H])(O)[C@]1([H])O |
---|
InChI Identifier | InChI=1S/C4H8O4/c5-2-1-8-4(7)3(2)6/h2-7H,1H2/t2-,3-,4?/m1/s1 |
---|
InChI Key | FMAORJIQYMIRHF-HERZVMAMSA-N |
---|
Experimental Spectra |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as pentoses. These are monosaccharides in which the carbohydrate moiety contains five carbon atoms. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organic oxygen compounds |
---|
Class | Organooxygen compounds |
---|
Sub Class | Carbohydrates and carbohydrate conjugates |
---|
Direct Parent | Pentoses |
---|
Alternative Parents | |
---|
Substituents | - Pentose monosaccharide
- Tetrahydrofuran
- Secondary alcohol
- Hemiacetal
- 1,2-diol
- Oxacycle
- Organoheterocyclic compound
- Polyol
- Hydrocarbon derivative
- Alcohol
- Aliphatic heteromonocyclic compound
|
---|
Molecular Framework | Aliphatic heteromonocyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Liquid |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Verzijl N, DeGroot J, Ben ZC, Brau-Benjamin O, Maroudas A, Bank RA, Mizrahi J, Schalkwijk CG, Thorpe SR, Baynes JW, Bijlsma JW, Lafeber FP, TeKoppele JM: Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis. Arthritis Rheum. 2002 Jan;46(1):114-23. [PubMed:11822407 ]
- DeGroot J, Verzijl N, Jacobs KM, Budde M, Bank RA, Bijlsma JW, TeKoppele JM, Lafeber FP: Accumulation of advanced glycation endproducts reduces chondrocyte-mediated extracellular matrix turnover in human articular cartilage. Osteoarthritis Cartilage. 2001 Nov;9(8):720-6. [PubMed:11795991 ]
- Kuberapandian D, Doss VA: Identification of serum predictors of n-acetyl-l-cysteine and isoproterenol induced remodelling in cardiac hypertrophy. Turk J Biol. 2021 Jun 23;45(3):323-332. doi: 10.3906/biy-2101-56. eCollection 2021. [PubMed:34377056 ]
- Mao Y, Yuan Q, Yang X, Liu P, Cheng Y, Luo J, Liu H, Yao Y, Sun H, Cai T, Ma H: Non-natural Aldol Reactions Enable the Design and Construction of Novel One-Carbon Assimilation Pathways in vitro. Front Microbiol. 2021 Jun 2;12:677596. doi: 10.3389/fmicb.2021.677596. eCollection 2021. [PubMed:34149668 ]
- Kim ES, Yaylayan V: Identification of the Maillard reaction intermediates as divalent iron complexes in alanine/glucose/FeCl2 model system using ESI/qTOF/MS/MS and isotope labelling technique. Curr Res Food Sci. 2021 Apr 21;4:287-294. doi: 10.1016/j.crfs.2021.04.003. eCollection 2021. [PubMed:33997795 ]
- Gao X, Jing X, Liu X, Lindblad P: Biotechnological Production of the Sunscreen Pigment Scytonemin in Cyanobacteria: Progress and Strategy. Mar Drugs. 2021 Feb 27;19(3). pii: md19030129. doi: 10.3390/md19030129. [PubMed:33673485 ]
- Modesto M, Checcucci A, Mattarelli P: Identification of Bifidobacteria by the Phosphoketolase Assay. Methods Mol Biol. 2021;2278:141-148. doi: 10.1007/978-1-0716-1274-3_12. [PubMed:33649954 ]
- Quan W, Jiao Y, Li Y, Xue C, Liu G, Wang Z, Qin F, He Z, Zeng M, Chen J: Metabolic changes from exposure to harmful Maillard reaction products and high-fat diet on Sprague-Dawley rats. Food Res Int. 2021 Mar;141:110129. doi: 10.1016/j.foodres.2021.110129. Epub 2021 Jan 9. [PubMed:33641996 ]
- Panda A, Rangani J, Parida AK: Physiological and metabolic adjustments in the xero-halophyte Haloxylon salicornicum conferring drought tolerance. Physiol Plant. 2021 Jun;172(2):1189-1211. doi: 10.1111/ppl.13351. Epub 2021 Feb 14. [PubMed:33511647 ]
|
---|