| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2005-11-16 15:48:42 UTC |
|---|
| Updated at | 2025-02-11 15:40:46 UTC |
|---|
| NP-MRD ID | NP0000354 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | N-Acetyl-L-alanine |
|---|
| Description | N-Acetyl-L-alanine or N-Acetylalanine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetyl-L-alanine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-alpha-Acetyl-L-alanine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-alanine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618 ). About 85% of all human proteins and 68% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686 ). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468 ). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468 ). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-Acetyl-L-alanine is a product of the enzyme known as ribosomal alanine N-acetyltransferase (EC 2.3.1.128) Which catalyzes the transfer of the acetyl group of acetyl CoA to proteins bearing an N-terminal alanine. N-acetylated amino acids, such as N-acetylalanine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618 ). Excessive amounts N-acetyl amino acids can be detected in the urine with individuals with aminoacylase I deficiency, a genetic disorder (PMID: 16465618 ). These include N-acetylalanine (as well as N-acetylserine, N-acetylglutamine, N-acetylglutamate, N-acetylglycine, N-acetylmethionine and smaller amounts of N-acetylthreonine, N-acetylleucine, N-acetylvaline and N-acetylisoleucine. Aminoacylase I is a soluble homodimeric zinc binding enzyme that catalyzes the formation of free aliphatic amino acids from N-acetylated precursors. In humans, Aminoacylase I is encoded by the aminoacylase 1 gene (ACY1) on chromosome 3p21 that consists of 15 exons (OMIM 609924 ). Individuals with aminoacylase I deficiency will experience convulsions, hearing loss and difficulty feeding (PMID: 16465618 ). ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. Many N-acetylamino acids, including N-acetylalanine, are classified as uremic toxins (PMID: 26317986 ; PMID: 20613759 ). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557 ). N-Acetyl-L-alanine has been identified in the human placenta (PMID: 32033212 ). |
|---|
| Structure | InChI=1S/C5H9NO3/c1-3(5(8)9)6-4(2)7/h3H,1-2H3,(H,6,7)(H,8,9)/t3-/m0/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| (S)-2-(Acetylamino)propanoic acid | ChEBI | | 2-Acetamidopropionic acid | ChEBI | | Ac-ala-OH | ChEBI | | Acetylalanine | ChEBI | | L-N-Acetylalanine | ChEBI | | N-Acetyl-L-alpha-alanine | ChEBI | | N-Acetyl-S-alanine | ChEBI | | N-Acetylalanine | ChEBI | | (S)-2-(Acetylamino)propanoate | Generator | | 2-Acetamidopropionate | Generator | | N-Acetyl-L-a-alanine | Generator | | N-Acetyl-L-α-alanine | Generator | | (S)-(-)-N-Acetylalanine | HMDB | | (S)-N-Acetylalanine | HMDB | | Acetyl-L-alanine | HMDB | | N-Acetyl-(S)-alanine | HMDB |
|
|---|
| Chemical Formula | C5H9NO3 |
|---|
| Average Mass | 131.1299 Da |
|---|
| Monoisotopic Mass | 131.05824 Da |
|---|
| IUPAC Name | (2S)-2-acetamidopropanoic acid |
|---|
| Traditional Name | N-acetylalanine |
|---|
| CAS Registry Number | 97-69-8 |
|---|
| SMILES | C[C@H](NC(C)=O)C(O)=O |
|---|
| InChI Identifier | InChI=1S/C5H9NO3/c1-3(5(8)9)6-4(2)7/h3H,1-2H3,(H,6,7)(H,8,9)/t3-/m0/s1 |
|---|
| InChI Key | KTHDTJVBEPMMGL-VKHMYHEASA-N |
|---|
| Experimental Spectra |
|---|
|
| | Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Predicted Spectra |
|---|
|
| Not Available | | Chemical Shift Submissions |
|---|
|
| | Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 400 MHz, H2O, simulated) | v.dorna83@yahoo.com | Not Available | Not Available | 2021-07-29 | View Spectrum |
| | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as n-acyl-l-alpha-amino acids. These are n-acylated alpha amino acids which have the L-configuration of the alpha-carbon atom. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Organic acids and derivatives |
|---|
| Class | Carboxylic acids and derivatives |
|---|
| Sub Class | Amino acids, peptides, and analogues |
|---|
| Direct Parent | N-acyl-L-alpha-amino acids |
|---|
| Alternative Parents | |
|---|
| Substituents | - N-acyl-l-alpha-amino acid
- Alanine or derivatives
- Acetamide
- Carboxamide group
- Secondary carboxylic acid amide
- Carboxylic acid
- Monocarboxylic acid or derivatives
- Organopnictogen compound
- Organic oxygen compound
- Organooxygen compound
- Organonitrogen compound
- Carbonyl group
- Organic nitrogen compound
- Organic oxide
- Hydrocarbon derivative
- Aliphatic acyclic compound
|
|---|
| Molecular Framework | Aliphatic acyclic compounds |
|---|
| External Descriptors | |
|---|
| Physical Properties |
|---|
| State | Solid |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|