Np mrd loader

Record Information
Version2.0
Created at2005-11-16 15:48:42 UTC
Updated at2024-09-17 15:41:31 UTC
NP-MRD IDNP0000274
Secondary Accession NumbersNone
Natural Product Identification
Common NameTG(10:0/10:0/10:0)
DescriptionTG(10:0/10:0/10:0) Or tricapric glyceride is a tridecanoic acid triglyceride or medium chain triglyceride. Triglycerides (TGs) are also known as triacylglycerols or triacylglycerides, meaning that they are glycerides in which the glycerol is esterified with three fatty acid groups (i.E. Fatty acid tri-esters of glycerol). TGs may be divided into three general types with respect to their acyl substituents. They are simple or monoacid if they contain only one type of fatty acid, diacid if they contain two types of fatty acids and triacid if three different acyl groups. Chain lengths of the fatty acids in naturally occurring triglycerides can be of varying lengths and saturations but 16, 18 and 20 carbons are the most common. TG(10:0/10:0/10:0), In particular, consists of one chain of decanoic acid at the C-1 position, one chain of decanoic acid at the C-2 position and one chain of decanoic acid acid at the C-3 position. TGs are the main constituent of vegetable oil and animal fats. TGs are major components of very low density lipoprotein (VLDL) and chylomicrons, play an important role in metabolism as energy sources and transporters of dietary fat. They contain more than twice the energy (9 kcal/g) of carbohydrates and proteins. In the intestine, triglycerides are split into glycerol and fatty acids (this process is called lipolysis) with the help of lipases and bile secretions, which can then move into blood vessels. The triglycerides are rebuilt in the blood from their fragments and become constituents of lipoproteins, which deliver the fatty acids to and from fat cells among other functions. Various tissues can release the free fatty acids and take them up as a source of energy. Fat cells can synthesize and store triglycerides. When the body requires fatty acids as an energy source, the hormone glucagon signals the breakdown of the triglycerides by hormone-sensitive lipase to release free fatty acids. As the brain cannot utilize fatty acids as an energy source, the glycerol component of triglycerides can be converted into glucose for brain fuel when it is broken down. (Www.Cyberlipid.Org, www.Wikipedia.Org). TAGs can serve as fatty acid stores in all cells, but primarily in adipocytes of adipose tissue. The major building block for the synthesis of triacylglycerides, in non-adipose tissue, is glycerol. Adipocytes lack glycerol kinase and so must use another route to TAG synthesis. Specifically, dihydroxyacetone phosphate (DHAP), which is produced during glycolysis, is the precursor for TAG synthesis in adipose tissue. DHAP can also serve as a TAG precursor in non-adipose tissues, but does so to a much lesser extent than glycerol. The use of DHAP for the TAG backbone depends on whether the synthesis of the TAGs occurs in the mitochondria and ER or the ER and the peroxisomes. The ER/mitochondria pathway requires the action of glycerol-3-phosphate dehydrogenase to convert DHAP to glycerol-3-phosphate. Glycerol-3-phosphate acyltransferase then esterifies a fatty acid to glycerol-3-phosphate thereby generating lysophosphatidic acid. The ER/peroxisome reaction pathway uses the peroxisomal enzyme DHAP acyltransferase to acylate DHAP to acyl-DHAP which is then reduced by acyl-DHAP reductase. The fatty acids that are incorporated into TAGs are activated to acyl-CoAs through the action of acyl-CoA synthetases. Two molecules of acyl-CoA are esterified to glycerol-3-phosphate to yield 1,2-diacylglycerol phosphate (also known as phosphatidic acid). The phosphate is then removed by phosphatidic acid phosphatase (PAP1), to generate 1,2-diacylglycerol. This diacylglycerol serves as the substrate for addition of the third fatty acid to make TAG. Intestinal monoacylglycerols, derived from dietary fats, can also serve as substrates for the synthesis of 1,2-diacylglycerols.
Structure
Thumb
Synonyms
ValueSource
1,2,3-Propanol tridecanoateChEBI
1,2,3-TridecanoylglycerolChEBI
Capric acid triglycerideChEBI
Capric triglycerideChEBI
CaprinChEBI
Decanoic acid, 1,2,3-propanetriyl esterChEBI
Glycerin tridecanoateChEBI
Glycerol tricaprateChEBI
Glycerol tridecanoateChEBI
Glyceryl tricaprateChEBI
Glyceryl tridecanoateChEBI
TG 10:0/10:0/10:0ChEBI
Tri-N-caprinChEBI
Tricapric glycerideChEBI
TridecanoinChEBI
TridecanoylglycerolChEBI
1,2,3-Propanol tridecanoic acidGenerator
Caprate triglycerideGenerator
Decanoate, 1,2,3-propanetriyl esterGenerator
Glycerin tridecanoic acidGenerator
Glycerol tricapric acidGenerator
Glycerol tridecanoic acidGenerator
Glyceryl tricapric acidGenerator
Glyceryl tridecanoic acidGenerator
1-Animal fats-2-animal fats-3-animal fats-glycerolHMDB
1-Decanoic acid-2-decanoic acid-3-decanoic acid-glycerolHMDB
TAG(10:0/10:0/10:0)HMDB
TriacylglycerolHMDB
Tracylglycerol(30:0)HMDB
TriglycerideHMDB
Tracylglycerol(10:0/10:0/10:0)HMDB
TAG(30:0)HMDB
TG(30:0)HMDB
1,2, 3-Propanetriyl-decanoateHMDB
1,2, 3-Propanetriyl-decanoic acidHMDB
2,3-Bis(decanoyloxy)propyl decanoateHMDB
2,3-Bis(decanoyloxy)propyl decanoate (acd/name 4.0)HMDB
2,3-Bis(decanoyloxy)propyl decanoic acidHMDB
Glycerol tricaprinHMDB
Tri-decanoinHMDB
TricaprinHMDB
TG(10:0/10:0/10:0)Lipid Annotator, ChEBI
Chemical FormulaC33H62O6
Average Mass554.8530 Da
Monoisotopic Mass554.45464 Da
IUPAC Name1,3-bis(decanoyloxy)propan-2-yl decanoate
Traditional Nametricaprin
CAS Registry Number621-71-6
SMILES
[H]C(COC(=O)CCCCCCCCC)(COC(=O)CCCCCCCCC)OC(=O)CCCCCCCCC
InChI Identifier
InChI=1S/C33H62O6/c1-4-7-10-13-16-19-22-25-31(34)37-28-30(39-33(36)27-24-21-18-15-12-9-6-3)29-38-32(35)26-23-20-17-14-11-8-5-2/h30H,4-29H2,1-3H3
InChI KeyLADGBHLMCUINGV-UHFFFAOYSA-N
Experimental Spectra
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
2D NMR[1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, CDCl3, experimental)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, D2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Anas platyrhynchosFooDB
AnatidaeFooDB
Anser anserFooDB
Bison bisonFooDB
Bos taurusFooDB
Bos taurus X Bison bisonFooDB
Bubalus bubalisFooDB
Capra aegagrus hircusFooDB
CervidaeFooDB
Cervus canadensisFooDB
ColumbaFooDB
ColumbidaeFooDB
Dromaius novaehollandiaeFooDB
Equus caballusFooDB
Gallus gallusFooDB
Lagopus mutaFooDB
LeporidaeFooDB
Lepus timidusFooDB
Melanitta fuscaFooDB
Meleagris gallopavoFooDB
Numida meleagrisFooDB
OdocoileusFooDB
OryctolagusFooDB
Ovis ariesFooDB
PhasianidaeFooDB
Phasianus colchicusFooDB
Struthio camelusFooDB
Sus scrofaFooDB
Sus scrofa domesticaFooDB
Umbellularia californicaLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as triacylglycerols. These are glycerides consisting of three fatty acid chains covalently bonded to a glycerol molecule through ester linkages.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassGlycerolipids
Sub ClassTriradylcglycerols
Direct ParentTriacylglycerols
Alternative Parents
Substituents
  • Triacyl-sn-glycerol
  • Tricarboxylic acid or derivatives
  • Fatty acid ester
  • Fatty acyl
  • Carboxylic acid ester
  • Carboxylic acid derivative
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling Point578.59 °C. @ 760.00 mm Hg (est)The Good Scents Company Information System
Water Solubility1.3e-08 mg/L @ 25 °C (est)The Good Scents Company Information System
LogP12.444 (est)The Good Scents Company Information System
Predicted Properties
PropertyValueSource
Water Solubility1.6e-05 g/LALOGPS
logP8.78ALOGPS
logP10.92ChemAxon
logS-7.5ALOGPS
pKa (Strongest Basic)-6.6ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area78.9 ŲChemAxon
Rotatable Bond Count32ChemAxon
Refractivity158.47 m³·mol⁻¹ChemAxon
Polarizability70.75 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDHMDB0000548
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB003134
KNApSAcK IDNot Available
Chemspider ID62521
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN ID5532
PubChem Compound69310
PDB IDNot Available
ChEBI ID77388
Good Scents IDrw1368221
References
General References
  1. Troller JA, Bozeman MA: Isolation and characterization of a staphylococcal lipase. Appl Microbiol. 1970 Sep;20(3):480-4. [PubMed:5485729 ]
  2. Fujikawa H, Ibe A, Wauke T, Morozumi S, Mori H: Flavor production from edible oils and their constituents by Penicillium corylophilum. Shokuhin Eiseigaku Zasshi. 2002 Jun;43(3):160-4. [PubMed:12238154 ]
  3. Tetrick MA, Greer FR, Benevenga NJ: Blood D-(-)-3-hydroxybutyrate concentrations after oral administration of trioctanoin, trinonanoin, or tridecanoin to newborn rhesus monkeys (Macaca mulatta). Comp Med. 2010 Dec;60(6):486-90. [PubMed:21262136 ]
  4. Kuksis A, Stachnyk O, Holub BJ: Improved quantitation of plasma lipids by direct gas-liquid chromatography. J Lipid Res. 1969 Nov;10(6):660-7. [PubMed:5348124 ]
  5. Kuksis A, Marai L: Determination of the complete structure of natural lecithins. Lipids. 1967 May;2(3):217-24. [PubMed:17805770 ]
  6. Brasiello A, Crescitelli S, Milano G: Development of a coarse-grained model for simulations of tridecanoin liquid-solid phase transitions. Phys Chem Chem Phys. 2011 Oct 6;13(37):16618-28. doi: 10.1039/c1cp20604d. Epub 2011 Aug 22. [PubMed:21858376 ]
  7. Litchfield C, Miller E, Harlow RD, Reiser R: The triglyceride composition of 17 seed fats rich in octanoic, decanoic, or lauric acid. Lipids. 1967 Jul;2(4):345-50. [PubMed:17805764 ]
  8. Straarup EM, Danielsen V, Hoy CE, Jakobsen K: Dietary structured lipids for post-weaning piglets: fat digestibility, nitrogen retention and fatty acid profiles of tissues. J Anim Physiol Anim Nutr (Berl). 2006 Apr;90(3-4):124-35. [PubMed:16519757 ]
  9. Straarup EM, Hoy CE: Structured lipids improve fat absorption in normal and malabsorbing rats. J Nutr. 2000 Nov;130(11):2802-8. [PubMed:11053524 ]