Record Information |
---|
Version | 2.0 |
---|
Created at | 2005-11-16 15:48:42 UTC |
---|
Updated at | 2021-08-19 23:57:54 UTC |
---|
NP-MRD ID | NP0000183 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | Cytidine triphosphate |
---|
Description | Cytidine triphosphate (CTP), also known as 5'-CTP, is pyrimidine nucleoside triphosphate. Formally, CTP is an ester of cytidine and triphosphoric acid. It belongs to the class of organic compounds known as pentose phosphates. These are carbohydrate derivatives containing a pentose substituted by one or more phosphate groups. CTP, much like ATP, consists of a base (cytosine), a ribose sugar, and three phosphate groups. CTP is a high-energy molecule similar to ATP, but its role as an energy coupler is limited to a much smaller subset of metabolic reactions. CTP exists in all living species, ranging from bacteria to plants to humans and is used in the synthesis of RNA via RNA polymerase. Another enzyme known as cytidine triphosphate synthetase (CTPS) mediates the conversion of uridine triphosphate (UTP) into cytidine triphosphate (CTP) which is the rate-limiting step of de novo CTP biosynthesis. CTPS catalyzes a complex set of reactions that include the ATP-dependent transfer of the amide nitrogen from glutamine (i.E., Glutaminase reaction) to the C-4 position of UTP to generate CTP. GTP stimulates the glutaminase reaction by accelerating the formation of a covalent glutaminyl enzyme intermediate. CTPS activity regulates the intracellular rates of RNA synthesis, DNA synthesis, and phospholipid synthesis. CTPS is an established target for a number of antiviral, antineoplastic, and antiparasitic drugs. CTP also acts as an inhibitor of the enzyme known as aspartate carbamoyltransferase, which is used in pyrimidine biosynthesis. CTP also reacts with nitrogen-containing alcohols to form coenzymes that participate in the formation of phospholipids. In particular, CTP is the direct precursor of the activated, phospholipid pathway intermediates CDP-diacylglycerol, CDP-choline, and CDP-ethanolamine ((PMID: 18439916 ). CDP-diacylglycerol is the source of the phosphatidyl moiety for phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine (synthesized by way of the CDP-diacylglycerol pathway) as well as phosphatidylglycerol, cardiolipin, and phosphatidylinositol (PMID: 18439916 ). |
---|
Structure | NC1=NC(=O)N(C=C1)[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O InChI=1S/C9H16N3O14P3/c10-5-1-2-12(9(15)11-5)8-7(14)6(13)4(24-8)3-23-28(19,20)26-29(21,22)25-27(16,17)18/h1-2,4,6-8,13-14H,3H2,(H,19,20)(H,21,22)(H2,10,11,15)(H2,16,17,18)/t4-,6-,7-,8-/m1/s1 |
---|
Synonyms | Value | Source |
---|
5'-CTP | ChEBI | Cytidine 5'-triphosphate | ChEBI | CYTIDINE-5'-triphosphATE | ChEBI | H4CTP | ChEBI | Cytidine 5'-triphosphoric acid | Generator | CYTIDINE-5'-triphosphoric acid | Generator | Cytidine triphosphoric acid | Generator | 5'-(Tetrahydrogen triphosphate) cytidine | HMDB | CTP | HMDB | Cytidine 3'-triphosphate | HMDB | Cytidine 5'-(tetrahydrogen triphosphate) | HMDB | Cytidine 5-prime-triphosphate | HMDB | Cytidine mono | HMDB | Cytidine mono(tetrahydrogen triphosphate) (ester) | HMDB | Deoxycytosine triphosphate | HMDB | Triphosphate, cytidine | HMDB | CRPPP | HMDB | Magnesium CTP | HMDB | MG CTP | HMDB |
|
---|
Chemical Formula | C9H16N3O14P3 |
---|
Average Mass | 483.1563 Da |
---|
Monoisotopic Mass | 482.98451 Da |
---|
IUPAC Name | ({[({[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid |
---|
Traditional Name | CTP |
---|
CAS Registry Number | 65-47-4 |
---|
SMILES | NC1=NC(=O)N(C=C1)[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O |
---|
InChI Identifier | InChI=1S/C9H16N3O14P3/c10-5-1-2-12(9(15)11-5)8-7(14)6(13)4(24-8)3-23-28(19,20)26-29(21,22)25-27(16,17)18/h1-2,4,6-8,13-14H,3H2,(H,19,20)(H,21,22)(H2,10,11,15)(H2,16,17,18)/t4-,6-,7-,8-/m1/s1 |
---|
InChI Key | PCDQPRRSZKQHHS-XVFCMESISA-N |
---|
Experimental Spectra |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Predicted Spectra |
---|
|
| Not Available | Chemical Shift Submissions |
---|
|
| Not Available | Species |
---|
Species of Origin | |
---|
Species Where Detected | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as pentose phosphates. These are carbohydrate derivatives containing a pentose substituted by one or more phosphate groups. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organic oxygen compounds |
---|
Class | Organooxygen compounds |
---|
Sub Class | Carbohydrates and carbohydrate conjugates |
---|
Direct Parent | Pentose phosphates |
---|
Alternative Parents | |
---|
Substituents | - Pentose phosphate
- Pentose-5-phosphate
- Glycosyl compound
- N-glycosyl compound
- Monosaccharide phosphate
- Hydroxypyrimidine
- Monoalkyl phosphate
- Hydropyrimidine
- Organic phosphoric acid derivative
- Alkyl phosphate
- Phosphoric acid ester
- Pyrimidine
- Heteroaromatic compound
- Tetrahydrofuran
- 1,2-diol
- Secondary alcohol
- Azacycle
- Oxacycle
- Organoheterocyclic compound
- Organonitrogen compound
- Hydrocarbon derivative
- Organic oxide
- Organopnictogen compound
- Organic nitrogen compound
- Alcohol
- Aromatic heteromonocyclic compound
|
---|
Molecular Framework | Aromatic heteromonocyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | 215 - 218 °C | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | 1000000 mg/L @ 25 °C (est) | The Good Scents Company Information System | LogP | Not Available | Not Available |
|
---|
Predicted Properties | |
---|
General References | - Kondo T, Ohtsuka Y, Shimada M, Kawakami Y, Hiyoshi Y, Tsuji Y, Fujii H, Miwa S: Erythrocyte-oxidized glutathione transport in pyrimidine 5'-nucleotidase deficiency. Am J Hematol. 1987 Sep;26(1):37-45. [PubMed:2888306 ]
- Kallander CF, Gronowitz JS, Olding-Stenkvist E: Varicella zoster virus deoxythymidine kinase is present in serum before the onset of varicella. Scand J Infect Dis. 1989;21(3):255-7. [PubMed:2547243 ]
- Verschuur AC, Brinkman J, Van Gennip AH, Leen R, Vet RJ, Evers LM, Voute PA, Van Kuilenburg AB: Cyclopentenyl cytosine induces apoptosis and increases cytarabine-induced apoptosis in a T-lymphoblastic leukemic cell-line. Leuk Res. 2001 Oct;25(10):891-900. [PubMed:11532523 ]
- Cornell RB, Northwood IC: Regulation of CTP:phosphocholine cytidylyltransferase by amphitropism and relocalization. Trends Biochem Sci. 2000 Sep;25(9):441-7. [PubMed:10973058 ]
- Chang YF, Carman GM: CTP synthetase and its role in phospholipid synthesis in the yeast Saccharomyces cerevisiae. Prog Lipid Res. 2008 Sep;47(5):333-9. doi: 10.1016/j.plipres.2008.03.004. Epub 2008 Apr 7. [PubMed:18439916 ]
|
---|