Np mrd loader

You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on NP-MRD.
Record Information
Version1.0
Created at2005-11-16 15:48:42 UTC
Updated at2021-08-15 04:56:44 UTC
NP-MRD IDNP0000092
Secondary Accession NumbersNone
Natural Product Identification
Common NameGlyoxylic acid
DescriptionGlyoxylic acid or oxoacetic acid is an organic compound that is both an aldehyde and a carboxylic acid. Glyoxylic acid is a liquid with a melting point of -93°C and a boiling point of 111°C. It is an intermediate of the glyoxylate cycle, which enables certain organisms to convert fatty acids into carbohydrates. The conjugate base of glyoxylic acid is known as glyoxylate (PMID: 16396466 ). In humans, glyoxylate is produced via two pathways: (1) Through the oxidation of glycolate in peroxisomes and (2) through the catabolism of hydroxyproline in mitochondria. In the peroxisomes, glyoxylate is converted into glycine by glyoxylate aminotransferase (AGT1) or into oxalate by glycolate oxidase. In the mitochondria, glyoxylate is converted into glycine by mitochondrial glyoxylate aminotransferase AGT2 or into glycolate by glycolate reductase. A small amount of glyoxylate is converted into oxalate by cytoplasmic lactate dehydrogenase. Glyoxylic acid is found to be associated with primary hyperoxaluria I, which is an inborn error of metabolism. Under certain circumstances, glyoxylate can be a nephrotoxin and a metabotoxin. A nephrotoxin is a compound that causes damage to the kidney and kidney tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. High levels of glyoxylate are involved in the development of hyperoxaluria, a key cause of nephrolithiasis (commonly known as kidney stones). Glyoxylate is both a substrate and inductor of sulfate anion transporter-1 (SAT-1), a gene responsible for oxalate transportation, allowing it to increase SAT-1 mRNA expression, and as a result oxalate efflux from the cell. The increased oxalate release allows the buildup of calcium oxalate in the urine, and thus the eventual formation of kidney stones. As an aldehyde, glyoxylate is also highly reactive and will modify proteins to form advanced glycation products (AGEs).
Structure
Thumb
Synonyms
ValueSource
alpha-Ketoacetic acidChEBI
Formylformic acidChEBI
GlyoxalateChEBI
GlyoxalsaeureChEBI
GlyoxylateChEBI
GlyoxylsaeureChEBI
Oxalaldehydic acidChEBI
Oxoethanoic acidChEBI
a-KetoacetateGenerator
a-Ketoacetic acidGenerator
alpha-KetoacetateGenerator
Α-ketoacetateGenerator
Α-ketoacetic acidGenerator
FormylformateGenerator
Glyoxalic acidGenerator
OxalaldehydateGenerator
OxoethanoateGenerator
OxoacetateHMDB
Oxoacetic acidHMDB
Glyoxylic acid, 2-(14)C-labeledHMDB
Glyoxylic acid, sodium saltHMDB
Glyoxylic acid, sodium salt, 2-(14)C-labeledHMDB
Glyoxylic acid, 14c2-labeledHMDB
Glyoxylic acid, calcium saltHMDB
Glyoxylic acid, sodium salt, 14C-labeledHMDB
Chemical FormulaC2H2O3
Average Mass74.0355 Da
Monoisotopic Mass74.00039 Da
IUPAC Name2-oxoacetic acid
Traditional Nameglyoxylic acid
CAS Registry Number298-12-4
SMILES
OC(=O)C=O
InChI Identifier
InChI=1S/C2H2O3/c3-1-2(4)5/h1H,(H,4,5)
InChI KeyHHLFWLYXYJOTON-UHFFFAOYSA-N
Spectra
Spectrum TypeDescriptionDepositor IDDeposition DateView
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, experimental)Wishart Lab2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, D2O, experimental)Wishart Lab2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, D2O, experimental)Wishart Lab2021-06-20View Spectrum
2D NMR[1H, 13C] NMR Spectrum (2D, 600 MHz, H2O, experimental)Wishart Lab2021-06-20View Spectrum
Species
Species of Origin
  • All
  • Chemical Taxonomy
    Description Belongs to the class of organic compounds known as carboxylic acids. Carboxylic acids are compounds containing a carboxylic acid group with the formula -C(=O)OH.
    KingdomOrganic compounds
    Super ClassOrganic acids and derivatives
    ClassCarboxylic acids and derivatives
    Sub ClassCarboxylic acids
    Direct ParentCarboxylic acids
    Alternative Parents
    Substituents
    • Monocarboxylic acid or derivatives
    • Carboxylic acid
    • Organic oxygen compound
    • Organic oxide
    • Hydrocarbon derivative
    • Short-chain aldehyde
    • Organooxygen compound
    • Carbonyl group
    • Aldehyde
    • Aliphatic acyclic compound
    Molecular FrameworkAliphatic acyclic compounds
    External Descriptors
    Physical Properties
    StateLiquid
    Experimental Properties
    PropertyValueReference
    Melting Point-93 °Chttps://en.wikipedia.org/wiki/Glyoxylic_acid
    Boiling Point111 °Chttps://en.wikipedia.org/wiki/Glyoxylic_acid
    Water SolubilityNot AvailableNot Available
    LogPNot AvailableNot Available
    Predicted Properties
    PropertyValueSource
    Water Solubility224 g/LALOGPS
    logP-0.59ALOGPS
    logP-0.13ChemAxon
    logS0.48ALOGPS
    pKa (Strongest Acidic)2.61ChemAxon
    pKa (Strongest Basic)-9.2ChemAxon
    Physiological Charge-1ChemAxon
    Hydrogen Acceptor Count3ChemAxon
    Hydrogen Donor Count1ChemAxon
    Polar Surface Area54.37 ŲChemAxon
    Rotatable Bond Count1ChemAxon
    Refractivity13.5 m³·mol⁻¹ChemAxon
    Polarizability5.35 ųChemAxon
    Number of Rings0ChemAxon
    BioavailabilityYesChemAxon
    Rule of FiveYesChemAxon
    Ghose FilterNoChemAxon
    Veber's RuleNoChemAxon
    MDDR-like RuleNoChemAxon
    External Links
    HMDB IDHMDB0000119
    DrugBank IDDB04343
    Phenol Explorer Compound IDNot Available
    FoodDB IDFDB007244
    KNApSAcK IDC00001186
    Chemspider ID740
    KEGG Compound IDC00048
    BioCyc IDGLYOX
    BiGG ID33659
    Wikipedia LinkGlyoxylic_acid
    METLIN ID3213
    PubChem Compound760
    PDB IDNot Available
    ChEBI ID16891
    Good Scents IDNot Available
    References
    General References
    1. Lee SH, Kim SO, Chung BC: Gas chromatographic-mass spectrometric determination of urinary oxoacids using O-(2,3,4,5,6-pentafluorobenzyl)oxime-trimethylsilyl ester derivatization and cation-exchange chromatography. J Chromatogr B Biomed Sci Appl. 1998 Nov 20;719(1-2):1-7. [PubMed:9869358 ]
    2. Booth ED, Dofferhoff O, Boogaard PJ, Watson WP: Comparison of the metabolism of ethylene glycol and glycolic acid in vitro by precision-cut tissue slices from female rat, rabbit and human liver. Xenobiotica. 2004 Jan;34(1):31-48. [PubMed:14742135 ]
    3. Naghizadeh F, Barlow D, King J: The reduction of oxo-acids by human tissue extracts. Clin Biochem. 1976 Apr;9(2):65-6. [PubMed:1261003 ]
    4. Borondy PE, Michniewicz BM: Metabolic disposition of isoxicam in man, monkey, dog, and rat. Drug Metab Dispos. 1984 Jul-Aug;12(4):444-51. [PubMed:6148211 ]
    5. Arvesen A, Maehlen J, Rosen L, Aas P: Myointimal hyperplasia and sympathetic reinnervation following local cold injury and rapid rewarming in the rabbit central ear artery. Vasa. 2001 Jul;30(3):176-83. [PubMed:11582947 ]
    6. Motomiya Y, Oyama N, Iwamoto H, Uchimura T, Maruyama I: N epsilon-(carboxymethyl)lysine in blood from maintenance hemodialysis patients may contribute to dialysis-related amyloidosis. Kidney Int. 1998 Oct;54(4):1357-66. [PubMed:9767556 ]
    7. Holmes E, Foxall PJ, Spraul M, Farrant RD, Nicholson JK, Lindon JC: 750 MHz 1H NMR spectroscopy characterisation of the complex metabolic pattern of urine from patients with inborn errors of metabolism: 2-hydroxyglutaric aciduria and maple syrup urine disease. J Pharm Biomed Anal. 1997 Jul;15(11):1647-59. [PubMed:9260660 ]
    8. Mentasti E, Savigliano M, Marangella M, Petrarulo M, Linari F: High-performance liquid chromatographic determination of glyoxylic acid and other carbonyl compounds in urine. J Chromatogr. 1987 Jul 3;417(2):253-60. [PubMed:3654878 ]
    9. Bruzzese FJ, Dix JA, Rava RP, Cerny LC: Resonance Raman spectroscopy of chemically modified hemoglobins. Biomater Artif Cells Artif Organs. 1990;18(2):143-56. [PubMed:2369642 ]
    10. Schmitt A, Gasic-Milenkovic J, Schmitt J: Characterization of advanced glycation end products: mass changes in correlation to side chain modifications. Anal Biochem. 2005 Nov 1;346(1):101-6. Epub 2005 Aug 15. [PubMed:16168380 ]
    11. Tainio H, Vaalasti A, Rechardt L: The distribution of sympathetic adrenergic, tyrosine hydroxylase- and neuropeptide Y-immunoreactive nerves in human axillary sweat glands. Histochemistry. 1986;85(2):117-20. [PubMed:2875046 ]
    12. Davis WL, Goodman DB: Evidence for the glyoxylate cycle in human liver. Anat Rec. 1992 Dec;234(4):461-8. [PubMed:1456449 ]
    13. Arvesen A, Maehlen J, Rosen L, Aas P: Early and late functional and histopathological perturbations in the rabbit ear-artery following local cold injury. Vasa. 1999 May;28(2):85-94. [PubMed:10409918 ]
    14. Popov VN, Moskalev EA, Shevchenko MIu, Eprintsev AT: [Comparative analysis of the glyoxylate cycle clue enzyme isocitrate lyases from organisms of different systemic groups]. Zh Evol Biokhim Fiziol. 2005 Nov-Dec;41(6):507-13. [PubMed:16396466 ]