Record Information |
---|
Version | 2.0 |
---|
Created at | 2005-11-16 15:48:42 UTC |
---|
Updated at | 2021-10-07 20:42:07 UTC |
---|
NP-MRD ID | NP0000072 |
---|
Secondary Accession Numbers | None |
---|
Natural Product Identification |
---|
Common Name | D-Glucose |
---|
Description | Glucose is a monosaccharide containing six carbon atoms and an aldehyde group. It is referred to as an aldohexose. The glucose molecule can exist in an open-chain (acyclic) and ring (cyclic) form, the latter being the result of an intramolecular reaction between the aldehyde C atom and the C-5 hydroxyl group to form an intramolecular hemiacetal. In aqueous solution, both forms are in equilibrium and at pH 7 the cyclic one is predominant. Glucose is a primary source of energy for all living organisms. It is a fundamental metabolite found in all organisms, ranging from bacteria to plants to humans. Most of the world’s glucose is made by plants and algae during photosynthesis from water and carbon dioxide, where it is used to make cellulose (and other polymeric forms of glucose called polysaccharides) that stabilize plant cell walls. Glucose is also found in fruits and other parts of plants in its free state. In animals, glucose can be generated from the breakdown of glycogen in a process known as glycogenolysis. Glucose can also be synthesized de novo in animals. In particular it can be synthesized in the liver and kidneys from non-carbohydrate intermediates, such as pyruvate and glycerol, by a process known as gluconeogenesis. Humans also consume large amounts of glucose as part of their regular diet. Ingested glucose initially binds to the receptor for sweet taste on the tongue in humans. This complex of the proteins T1R2 and T1R3 makes it possible to identify glucose-containing food sources. Glucose in the body mainly comes from food - about 300 g per day for the average adult. In humans, the breakdown of glucose-containing polysaccharides happens partly during chewing by means of the enzyme known as amylase, which is contained in saliva, as well as by other enzymes such as maltase, lactase and sucrase on the brush border of the small intestine. The blood sugar content of a healthy person in the short-time fasting state, e.G. After overnight fasting, is about 70 to 100 mg/dL of blood (4 to 5.5 MM). In blood plasma, the measured values are about 10–15% higher. Dysregulated metabolism of glucose can lead to a number of diseases including diabetes. Diabetes is a metabolic disorder where the body is unable to regulate levels of glucose in the blood either because of a lack of insulin in the body or the failure, by cells in the body, to respond properly to insulin. Each of these situations can be caused by persistently high elevations of blood glucose levels, through pancreatic burnout and insulin resistance. |
---|
Structure | OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O InChI=1S/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h2-11H,1H2/t2-,3-,4+,5-,6-/m1/s1 |
---|
Synonyms | Value | Source |
---|
WURCS=2.0/1,1,0/[a2122h-1b_1-5]/1/ | ChEBI | beta-D-Glucopyranose | Kegg | b-D-Glucopyranose | Generator | Glucose | HMDB | b-D-Glucose | HMDB | Β-D-glucose | HMDB | b-Dextrose | HMDB | b-Glucose | HMDB | beta-Dextrose | HMDB | beta-Glucose | HMDB | D Glucose | HMDB | Glucose, (beta-D)-isomer | HMDB | Dextrose | HMDB | Glucose, (DL)-isomer | HMDB | D-Glucopyranose | HMDB | D-Glucopyranoside | HMDB | beta-D-Glucopyranoside | HMDB | beta-D-Glucose | HMDB | Β-D-glucopyranoside | HMDB | Β-dextrose | HMDB | Β-glucose | HMDB | D-GLC | HMDB | D-GLCP | HMDB | GLC-OH | HMDB | D-Glucose | MeSH, HMDB |
|
---|
Chemical Formula | C6H12O6 |
---|
Average Mass | 180.1559 Da |
---|
Monoisotopic Mass | 180.06339 Da |
---|
IUPAC Name | (2R,3R,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol |
---|
Traditional Name | glucoside |
---|
CAS Registry Number | 50-99-7 |
---|
SMILES | [H]C1(O)O[C@]([H])(CO)[C@@]([H])(O)[C@]([H])(O)[C@@]1([H])O |
---|
InChI Identifier | InChI=1S/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h2-11H,1H2/t2-,3-,4+,5-,6?/m1/s1 |
---|
InChI Key | WQZGKKKJIJFFOK-GASJEMHNSA-N |
---|
Experimental Spectra |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Predicted Spectra |
---|
|
| Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 13C NMR Spectrum (1D, 25 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| Chemical Shift Submissions |
---|
|
| Spectrum Type | Description | Depositor Email | Depositor Organization | Depositor | Deposition Date | View |
---|
1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, simulated) | varshavi.d26@gmail.com | Not Available | Not Available | 2021-08-16 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, simulated) | v.dorna83@yahoo.com | Not Available | Not Available | 2021-08-14 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 400 MHz, H2O, simulated) | v.dorna83@yahoo.com | Not Available | Not Available | 2021-08-11 | View Spectrum |
| Species |
---|
Species of Origin | |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as hexoses. These are monosaccharides in which the sugar unit is a is a six-carbon containing moeity. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organic oxygen compounds |
---|
Class | Organooxygen compounds |
---|
Sub Class | Carbohydrates and carbohydrate conjugates |
---|
Direct Parent | Hexoses |
---|
Alternative Parents | |
---|
Substituents | - Hexose monosaccharide
- Oxane
- Secondary alcohol
- Hemiacetal
- Oxacycle
- Organoheterocyclic compound
- Polyol
- Hydrocarbon derivative
- Primary alcohol
- Alcohol
- Aliphatic heteromonocyclic compound
|
---|
Molecular Framework | Aliphatic heteromonocyclic compounds |
---|
External Descriptors | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Properties | Property | Value | Reference |
---|
Melting Point | 146 - 150 °C | https://en.wikipedia.org/wiki/Glucose | Boiling Point | Not Available | Not Available | Water Solubility | 1200 mg/mL | Not Available | LogP | -3.24 | Sangster, J. (1993). LOGKOW- a Databank of Evaluated Octanol-Water Partition Coefficients. Sangster Research Laboratories, Montreal. |
|
---|
Predicted Properties | |
---|
General References | - Subramanian A, Gupta A, Saxena S, Gupta A, Kumar R, Nigam A, Kumar R, Mandal SK, Roy R: Proton MR CSF analysis and a new software as predictors for the differentiation of meningitis in children. NMR Biomed. 2005 Jun;18(4):213-25. [PubMed:15627241 ]
- Bales JR, Higham DP, Howe I, Nicholson JK, Sadler PJ: Use of high-resolution proton nuclear magnetic resonance spectroscopy for rapid multi-component analysis of urine. Clin Chem. 1984 Mar;30(3):426-32. [PubMed:6321058 ]
- Redjems-Bennani N, Jeandel C, Lefebvre E, Blain H, Vidailhet M, Gueant JL: Abnormal substrate levels that depend upon mitochondrial function in cerebrospinal fluid from Alzheimer patients. Gerontology. 1998;44(5):300-4. [PubMed:9693263 ]
- Badiee P, Kordbacheh P, Alborzi A, Zeini F, Mirhendy H, Mahmoody M: Fungal infections in solid organ recipients. Exp Clin Transplant. 2005 Dec;3(2):385-9. [PubMed:16417449 ]
- Surdacki A, Nowicki M, Sandmann J, Tsikas D, Boeger RH, Bode-Boeger SM, Kruszelnicka-Kwiatkowska O, Kokot F, Dubiel JS, Froelich JC: Reduced urinary excretion of nitric oxide metabolites and increased plasma levels of asymmetric dimethylarginine in men with essential hypertension. J Cardiovasc Pharmacol. 1999 Apr;33(4):652-8. [PubMed:10218738 ]
- Zhao J, Wu LF: [Study of the causes of fetal growth restriction with unclear etiologies]. Zhonghua Fu Chan Ke Za Zhi. 2004 May;39(5):329-33. [PubMed:15196417 ]
- Flynn DM, Fairney A, Jackson D, Clayton BE: Hormonal changes in thalassaemia major. Arch Dis Child. 1976 Nov;51(11):828-36. [PubMed:1008588 ]
- Sokup A, Swiatkowski M, Tyloch M, Skublicki S, Szymanski W, Goralczyk K: [Insulin secretion at the diagnosis of gestational diabetes is lower in multiparas than in primiparas]. Ginekol Pol. 2006 Jan;77(1):4-9. [PubMed:16736954 ]
- Roberts E: The importance of being dehydroepiandrosterone sulfate (in the blood of primates): a longer and healthier life? Biochem Pharmacol. 1999 Feb 15;57(4):329-46. [PubMed:9933021 ]
- Kodama H, Okada S, Inui K, Yutaka T, Yabuuchi H: Studies on alpha-ketoglutaric aciduria in type I glycogenosis. Tohoku J Exp Med. 1980 Aug;131(4):347-53. [PubMed:6936873 ]
- Gollan JL, Huang SN, Billing B, Sherlock S: Prolonged survival in three brothers with severe type 2 Crigler-Najjar syndrome. Ultrastructural and metabolic studies. Gastroenterology. 1975 Jun;68(6):1543-55. [PubMed:805737 ]
- Hourd P, Edge JA, Dunger DB, Dalton N, Edwards R: Urinary growth hormone excretion during puberty in type 1 (insulin-dependent) diabetes mellitus. Diabet Med. 1991 Apr;8(3):237-42. [PubMed:1828739 ]
- Zebrower ME, Kieras FJ, Brown WT: Analysis by high-performance liquid chromatography of hyaluronic acid and chondroitin sulfates. Anal Biochem. 1986 Aug 15;157(1):93-9. [PubMed:3094400 ]
- Sakai T, Suzuki J, Marumo F, Kikawada R: A case of Fanconi syndrome with type 1 renal tubular acidosis. Jpn Circ J. 1981 Oct;45(10):1164-9. [PubMed:7299995 ]
- Rohdewald VP, Rehder J, Mollmann H, Barth J, Derendorf H: [Pharmacokinetics and pharmacodynamics of prednisolone following extremely high dosage as prednisolone hemisuccinate]. Arzneimittelforschung. 1987 Feb;37(2):194-8. [PubMed:3580023 ]
- Brodehl J, Oemar BS, Hoyer PF: Renal glucosuria. Pediatr Nephrol. 1987 Jul;1(3):502-8. [PubMed:3153324 ]
- Harada H, Shimizu H, Maeiwa M: 1H-NMR of human saliva. An application of NMR spectroscopy in forensic science. Forensic Sci Int. 1987 Jul;34(3):189-95. [PubMed:3666622 ]
|
---|