| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2024-09-11 23:12:36 UTC |
|---|
| Updated at | 2024-09-11 23:12:37 UTC |
|---|
| NP-MRD ID | NP0339717 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | 8-oxo-GTP |
|---|
| Description | 8-Oxo-GTP belongs to the class of organic compounds known as purine ribonucleoside triphosphates. These are purine ribobucleotides with a triphosphate group linked to the ribose moiety. 8-oxo-GTP was first documented in 2013 (PMID: 23463507). Based on a literature review a significant number of articles have been published on 8-oxo-GTP (PMID: 38776712) (PMID: 38657843) (PMID: 36746255) (PMID: 36139879) (PMID: 35809767) (PMID: 33021500). |
|---|
| Structure | NC1=NC2=C(NC(=O)N2C2OC(COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)C(O)C2O)C(=O)N1 InChI=1/C10H16N5O15P3/c11-9-13-6-3(7(18)14-9)12-10(19)15(6)8-5(17)4(16)2(28-8)1-27-32(23,24)30-33(25,26)29-31(20,21)22/h2,4-5,8,16-17H,1H2,(H,12,19)(H,23,24)(H,25,26)(H2,20,21,22)(H3,11,13,14,18)/p-4 |
|---|
| Synonyms | Not Available |
|---|
| Chemical Formula | C10H12N5O15P3 |
|---|
| Average Mass | 535.1490 Da |
|---|
| Monoisotopic Mass | 534.95647 Da |
|---|
| IUPAC Name | ({[5-(2-amino-6,8-dioxo-6,7,8,9-tetrahydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphonato}oxy)(phosphonatooxy)phosphinate |
|---|
| Traditional Name | {[5-(2-amino-6,8-dioxo-1,7-dihydropurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphonato}oxy(phosphonatooxy)phosphinate |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | NC1=NC2=C(NC(=O)N2C2OC(COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)C(O)C2O)C(=O)N1 |
|---|
| InChI Identifier | InChI=1/C10H16N5O15P3/c11-9-13-6-3(7(18)14-9)12-10(19)15(6)8-5(17)4(16)2(28-8)1-27-32(23,24)30-33(25,26)29-31(20,21)22/h2,4-5,8,16-17H,1H2,(H,12,19)(H,23,24)(H,25,26)(H2,20,21,22)(H3,11,13,14,18)/p-4 |
|---|
| InChI Key | JCHLKIQZUXYLPW-UHFFFAOYNA-J |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| Not Available | | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | Not Available |
|---|
| Chemical Taxonomy |
|---|
| Description | This compound belongs to the class of organic compounds known as purine ribonucleoside triphosphates. These are purine ribobucleotides with a triphosphate group linked to the ribose moiety. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Nucleosides, nucleotides, and analogues |
|---|
| Class | Purine nucleotides |
|---|
| Sub Class | Purine ribonucleotides |
|---|
| Direct Parent | Purine ribonucleoside triphosphates |
|---|
| Alternative Parents | |
|---|
| Substituents | - Purine ribonucleoside triphosphate
- Purine ribonucleoside monophosphate
- Pentose phosphate
- Pentose-5-phosphate
- Glycosyl compound
- N-glycosyl compound
- 6-oxopurine
- Hypoxanthine
- Monosaccharide phosphate
- Pentose monosaccharide
- Purinone
- Imidazopyrimidine
- Purine
- Aminopyrimidine
- Pyrimidone
- Monosaccharide
- N-substituted imidazole
- Organic phosphoric acid derivative
- Phosphoric acid ester
- Alkyl phosphate
- Pyrimidine
- Tetrahydrofuran
- Azole
- Vinylogous amide
- Imidazole
- Heteroaromatic compound
- Secondary alcohol
- Urea
- Lactam
- 1,2-diol
- Oxacycle
- Azacycle
- Organoheterocyclic compound
- Primary amine
- Hydrocarbon derivative
- Organic oxide
- Organopnictogen compound
- Amine
- Organic oxygen compound
- Organic nitrogen compound
- Alcohol
- Organonitrogen compound
- Organooxygen compound
- Organic anion
- Aromatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aromatic heteropolycyclic compounds |
|---|
| External Descriptors | |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Emam EAF, Roy K, Varshney U: An exchange of single amino acid between the phosphohydrolase modules of Escherichia coli MutT and Mycobacterium smegmatis MutT1 switches their cleavage specificities. DNA Repair (Amst). 2024 Jul;139:103693. doi: 10.1016/j.dnarep.2024.103693. Epub 2024 May 15. [PubMed:38776712 ]
- Li Y, Wang X: The role of DNA and RNA guanosine oxidation in cardiovascular diseases. Pharmacol Res. 2024 Jun;204:107187. doi: 10.1016/j.phrs.2024.107187. Epub 2024 Apr 23. [PubMed:38657843 ]
- Nigo F, Nakagawa R, Hirai Y, Imai L, Suzuki Y, Furuta K, Kaito C: Staphylococcus aureus MazG hydrolyzes oxidized guanine nucleotides and contributes to oxidative stress resistance. Biochimie. 2023 Jun;209:52-60. doi: 10.1016/j.biochi.2023.02.001. Epub 2023 Feb 4. [PubMed:36746255 ]
- Kondo Y, Rikiishi K, Sugimoto M: Rice Nudix Hydrolase OsNUDX2 Sanitizes Oxidized Nucleotides. Antioxidants (Basel). 2022 Sep 13;11(9):1805. doi: 10.3390/antiox11091805. [PubMed:36139879 ]
- Li J, Wang ZH, Dang YM, Li DN, Liu Z, Dai DP, Cai JP: MTH1 suppression enhances the stemness of MCF7 through upregulation of STAT3. Free Radic Biol Med. 2022 Aug 1;188:447-458. doi: 10.1016/j.freeradbiomed.2022.06.240. Epub 2022 Jul 6. [PubMed:35809767 ]
- Raj P, Karthik S, Arif SM, Varshney U, Vijayan M: Plasticity, ligand conformation and enzyme action of Mycobacterium smegmatis MutT1. Acta Crystallogr D Struct Biol. 2020 Oct 1;76(Pt 10):982-992. doi: 10.1107/S2059798320010992. Epub 2020 Sep 16. [PubMed:33021500 ]
- Samaan GN, Paranagama N, Haque A, Hecht DA, Swairjo MA, Purse BW: Structure-based design of guanosine analogue inhibitors targeting GTP cyclohydrolase IB towards a new class of antibiotics. Bioorg Med Chem Lett. 2020 Jan 15;30(2):126818. doi: 10.1016/j.bmcl.2019.126818. Epub 2019 Nov 12. [PubMed:31771800 ]
- Arif SM, Patil AG, Varshney U, Vijayan M: Biochemical and structural studies of Mycobacterium smegmatis MutT1, a sanitization enzyme with unusual modes of association. Acta Crystallogr D Struct Biol. 2017 Apr 1;73(Pt 4):349-364. doi: 10.1107/S2059798317002534. Epub 2017 Mar 31. [PubMed:28375146 ]
- Paranagama N, Bonnett SA, Alvarez J, Luthra A, Stec B, Gustafson A, Iwata-Reuyl D, Swairjo MA: Mechanism and catalytic strategy of the prokaryotic-specific GTP cyclohydrolase-IB. Biochem J. 2017 Mar 7;474(6):1017-1039. doi: 10.1042/BCJ20161025. [PubMed:28126741 ]
- Tanaka S, Kihara M, Sugimoto M: Structure and molecular characterization of barley nudix hydrolase genes. Biosci Biotechnol Biochem. 2015;79(3):394-401. doi: 10.1080/09168451.2014.978259. Epub 2014 Nov 7. [PubMed:25379607 ]
- Gordon AJ, Satory D, Wang M, Halliday JA, Golding I, Herman C: Removal of 8-oxo-GTP by MutT hydrolase is not a major contributor to transcriptional fidelity. Nucleic Acids Res. 2014 Oct 29;42(19):12015-26. doi: 10.1093/nar/gku912. Epub 2014 Oct 7. [PubMed:25294823 ]
- Kumpornsin K, Kotanan N, Chobson P, Kochakarn T, Jirawatcharadech P, Jaru-ampornpan P, Yuthavong Y, Chookajorn T: Biochemical and functional characterization of Plasmodium falciparum GTP cyclohydrolase I. Malar J. 2014 Apr 19;13:150. doi: 10.1186/1475-2875-13-150. [PubMed:24745605 ]
- Patil AG, Sang PB, Govindan A, Varshney U: Mycobacterium tuberculosis MutT1 (Rv2985) and ADPRase (Rv1700) proteins constitute a two-stage mechanism of 8-oxo-dGTP and 8-oxo-GTP detoxification and adenosine to cytidine mutation avoidance. J Biol Chem. 2013 Apr 19;288(16):11252-62. doi: 10.1074/jbc.M112.442566. Epub 2013 Mar 5. [PubMed:23463507 ]
- Sekiguchi T, Ito R, Hayakawa H, Sekiguchi M: Elimination and utilization of oxidized guanine nucleotides in the synthesis of RNA and its precursors. J Biol Chem. 2013 Mar 22;288(12):8128-8135. doi: 10.1074/jbc.M112.418723. Epub 2013 Feb 3. [PubMed:23376345 ]
- Sang PB, Varshney U: Biochemical properties of MutT2 proteins from Mycobacterium tuberculosis and M. smegmatis and their contrasting antimutator roles in Escherichia coli. J Bacteriol. 2013 Apr;195(7):1552-60. doi: 10.1128/JB.02102-12. Epub 2013 Jan 25. [PubMed:23354752 ]
|
|---|