| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-12 14:04:16 UTC |
|---|
| Updated at | 2022-09-12 14:04:16 UTC |
|---|
| NP-MRD ID | NP0329562 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | n-[(10s,12r,16s)-3,4,5,14-tetramethoxy-13-oxotetracyclo[9.5.0.0²,⁷.0¹²,¹⁶]hexadeca-1(11),2,4,6,14-pentaen-10-yl]ethanimidic acid |
|---|
| Description | Lumicolchicine belongs to the class of organic compounds known as lumicolchicine alkaloids. These are alkaloids with a structure based on the tetracyclic lumicolchicine skeleton. They can derive from a colchicine precursor where the cycloheptatriene ring is replaced with a bicyclo[3.2.0]Hepta-2,6-diene ring system. n-[(10s,12r,16s)-3,4,5,14-tetramethoxy-13-oxotetracyclo[9.5.0.0²,⁷.0¹²,¹⁶]hexadeca-1(11),2,4,6,14-pentaen-10-yl]ethanimidic acid is found in Colchicum alpinum, Colchicum arenarium, Colchicum autumnale, Colchicum bivonae, Colchicum szovitsii, Gloriosa superba, Colchicum robustum and Wurmbea inframediana. n-[(10s,12r,16s)-3,4,5,14-tetramethoxy-13-oxotetracyclo[9.5.0.0²,⁷.0¹²,¹⁶]hexadeca-1(11),2,4,6,14-pentaen-10-yl]ethanimidic acid was first documented in 2005 (PMID: 15730238). Based on a literature review a significant number of articles have been published on Lumicolchicine (PMID: 32276367) (PMID: 16835088) (PMID: 32372642) (PMID: 21059382) (PMID: 28823172) (PMID: 23527799). |
|---|
| Structure | COC1=C[C@H]2[C@H](C3=C2C2=C(OC)C(OC)=C(OC)C=C2CC[C@@H]3N=C(C)O)C1=O InChI=1S/C22H25NO6/c1-10(24)23-13-7-6-11-8-15(27-3)21(28-4)22(29-5)16(11)17-12-9-14(26-2)20(25)18(12)19(13)17/h8-9,12-13,18H,6-7H2,1-5H3,(H,23,24)/t12-,13+,18-/m1/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| beta-Lumicolchicine | MeSH | | gamma-Lumicolchicine | MeSH | | gamma Lumicolchicine | MeSH | | Lumicolchicines | MeSH | | beta Lumicolchicine | MeSH |
|
|---|
| Chemical Formula | C22H25NO6 |
|---|
| Average Mass | 399.4430 Da |
|---|
| Monoisotopic Mass | 399.16819 Da |
|---|
| IUPAC Name | N-[(10S,12R,16S)-3,4,5,14-tetramethoxy-13-oxotetracyclo[9.5.0.0^{2,7}.0^{12,16}]hexadeca-1(11),2,4,6,14-pentaen-10-yl]ethanimidic acid |
|---|
| Traditional Name | N-[(10S,12R,16S)-3,4,5,14-tetramethoxy-13-oxotetracyclo[9.5.0.0^{2,7}.0^{12,16}]hexadeca-1(11),2,4,6,14-pentaen-10-yl]ethanimidic acid |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | COC1=C[C@H]2[C@H](C3=C2C2=C(OC)C(OC)=C(OC)C=C2CC[C@@H]3N=C(C)O)C1=O |
|---|
| InChI Identifier | InChI=1S/C22H25NO6/c1-10(24)23-13-7-6-11-8-15(27-3)21(28-4)22(29-5)16(11)17-12-9-14(26-2)20(25)18(12)19(13)17/h8-9,12-13,18H,6-7H2,1-5H3,(H,23,24)/t12-,13+,18-/m1/s1 |
|---|
| InChI Key | VKPVZFOUXUQJMW-FHSNZYRGSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as lumicolchicine alkaloids. These are alkaloids with a structure based on the tetracyclic lumicolchicine skeleton. They can derive from a colchicine precursor where the cycloheptatriene ring is replaced with a bicyclo[3.2.0]Hepta-2,6-diene ring system. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Alkaloids and derivatives |
|---|
| Class | Lumicolchicine alkaloids |
|---|
| Sub Class | Not Available |
|---|
| Direct Parent | Lumicolchicine alkaloids |
|---|
| Alternative Parents | |
|---|
| Substituents | - Lumicolchicine alkaloid skeleton
- Anisole
- Alkyl aryl ether
- Benzenoid
- Acetamide
- Carboxamide group
- Ketone
- Secondary carboxylic acid amide
- Ether
- Carboxylic acid derivative
- Organooxygen compound
- Organonitrogen compound
- Organic oxygen compound
- Organic nitrogen compound
- Carbonyl group
- Organopnictogen compound
- Organic oxide
- Hydrocarbon derivative
- Aromatic homopolycyclic compound
|
|---|
| Molecular Framework | Aromatic homopolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Senizza B, Rocchetti G, Okur MA, Zengin G, Yildiztugay E, Ak G, Montesano D, Lucini L: Phytochemical Profile and Biological Properties of Colchicum triphyllum (Meadow Saffron). Foods. 2020 Apr 8;9(4). pii: foods9040457. doi: 10.3390/foods9040457. [PubMed:32276367 ]
- Alali FQ, Tawaha K, El-Elimat T, Qasaymeh R, Li C, Burgess J, Nakanishi Y, Kroll DJ, Wani MC, Oberlies NH: Phytochemical studies and cytotoxicity evaluations of Colchicum tunicatum Feinbr and Colchicum hierosolymitanum Feinbr (Colchicaceae): two native Jordanian meadow saffrons. Nat Prod Res. 2006 May 20;20(6):558-66. doi: 10.1080/14786410500183381. [PubMed:16835088 ]
- Alali FQ, El-Elimat T, Li C, Qandil A, Alkofahi A, Tawaha K, Burgess JP, Nakanishi Y, Kroll DJ, Navarro HA, Falkinham JO 3rd, Wani MC, Oberlies NH: New colchicinoids from a native Jordanian meadow saffron, colchicum brachyphyllum: isolation of the first naturally occurring dextrorotatory colchicinoid. J Nat Prod. 2005 Feb;68(2):173-8. doi: 10.1021/np0496587. [PubMed:15730238 ]
- Wang D, Murtaza M, Wood SA, Mellick GD, Miao WG, Guymer GP, Forster PI, Feng Y, Quinn RJ: A Grand Challenge. 3. Unbiased Phenotypic Function of Metabolites from Australia Plants Gloriosa superba and Alangium villosum against Parkinson's Disease. J Nat Prod. 2020 May 22;83(5):1440-1452. doi: 10.1021/acs.jnatprod.9b00880. Epub 2020 May 6. [PubMed:32372642 ]
- Jana S, Shekhawat GS: Critical review on medicinally potent plant species: Gloriosa superba. Fitoterapia. 2011 Apr;82(3):293-301. doi: 10.1016/j.fitote.2010.11.008. Epub 2010 Nov 6. [PubMed:21059382 ]
- Liu X, Hu YJ, Chen B, Min L, Peng XS, Zhao J, Li S, Wong HNC, Li CC: Asymmetric Total Syntheses of Colchicine, beta-Lumicolchicine, and Allocolchicinoid N-Acetylcolchinol-O-methyl Ether (NCME). Org Lett. 2017 Sep 1;19(17):4612-4615. doi: 10.1021/acs.orglett.7b02224. Epub 2017 Aug 19. [PubMed:28823172 ]
- Li NJ, Gu X, Li W, Li Y, Li SQ, He P: Effect of phenylephrine on alveolar fluid clearance in ventilator-induced lung injury. Chin Med Sci J. 2013 Mar;28(1):1-6. doi: 10.1016/s1001-9294(13)60011-5. [PubMed:23527799 ]
- Al-Mahmoud MS, Alali FQ, Tawaha K, Qasaymeh RM: Phytochemical study and cytotoxicity evaluation of Colchicum stevenii Kunth (Colchicaceae): a Jordanian meadow saffron. Nat Prod Res. 2006 Feb;20(2):153-60. doi: 10.1080/14786410500046224. [PubMed:16319009 ]
- Jarzynka MJ, Passey DK, Johnson DA, Konduru NV, Fitz NF, Radio NM, Rasenick M, Benloucif S, Melan MA, Witt-Enderby PA: Microtubules modulate melatonin receptors involved in phase-shifting circadian activity rhythms: in vitro and in vivo evidence. J Pineal Res. 2009 Mar;46(2):161-71. doi: 10.1111/j.1600-079X.2008.00644.x. Epub 2008 Oct 28. [PubMed:19175856 ]
- Alali FQ, Gharaibeh A, Ghawanmeh A, Tawaha K, Oberlies NH: Colchicinoids from Colchicum crocifolium Boiss.: a case study in dereplication strategies for (-)-colchicine and related analogues using LC-MS and LC-PDA techniques. Phytochem Anal. 2008 Sep-Oct;19(5):385-94. doi: 10.1002/pca.1060. [PubMed:18444231 ]
- Cacelli I, D'Auria M, Villani V: Theoretical Study of the Photochemical Isomerization of Colchicine. J Chem Theory Comput. 2007 Mar;3(2):649-56. doi: 10.1021/ct600306t. [PubMed:26637043 ]
- Mottino AD, Crocenzi FA, Pozzi EJ, Veggi LM, Roma MG, Vore M: Role of microtubules in estradiol-17beta-D-glucuronide-induced alteration of canalicular Mrp2 localization and activity. Am J Physiol Gastrointest Liver Physiol. 2005 Feb;288(2):G327-36. doi: 10.1152/ajpgi.00227.2004. Epub 2004 Sep 16. [PubMed:15374814 ]
- LOTUS database [Link]
|
|---|