| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-09 00:13:16 UTC |
|---|
| Updated at | 2022-09-09 00:13:16 UTC |
|---|
| NP-MRD ID | NP0276216 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | (1r,4s,6r,7r,17r)-4,7-dihydroxy-4-[(1r)-1-hydroxyethyl]-6,7-dimethyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione |
|---|
| Description | Jacoline belongs to the class of organic compounds known as macrolides and analogues. These are organic compounds containing a lactone ring of at least twelve members. Jacoline is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. (1r,4s,6r,7r,17r)-4,7-dihydroxy-4-[(1r)-1-hydroxyethyl]-6,7-dimethyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione is found in Crassocephalum crepidioides, Crotalaria micans, Jacobaea minuta, Jacobaea vulgaris and Senecio vulgaris. (1r,4s,6r,7r,17r)-4,7-dihydroxy-4-[(1r)-1-hydroxyethyl]-6,7-dimethyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione was first documented in 2006 (PMID: 16826978). Based on a literature review a significant number of articles have been published on jacoline (PMID: 21969251) (PMID: 35948427) (PMID: 21506416) (PMID: 17913058) (PMID: 21159354) (PMID: 32870736). |
|---|
| Structure | C[C@@H](O)[C@@]1(O)C[C@@H](C)[C@@](C)(O)C(=O)OCC2=CCN3CC[C@@H](OC1=O)[C@@H]23 InChI=1S/C18H27NO7/c1-10-8-18(24,11(2)20)16(22)26-13-5-7-19-6-4-12(14(13)19)9-25-15(21)17(10,3)23/h4,10-11,13-14,20,23-24H,5-9H2,1-3H3/t10-,11-,13-,14-,17-,18+/m1/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| (15alpha,20R)-12,15,20-Trihydroxy-15,20-dihydrosenecionan-11,16-dione | ChEBI | | (15a,20R)-12,15,20-Trihydroxy-15,20-dihydrosenecionan-11,16-dione | Generator | | (15Α,20R)-12,15,20-trihydroxy-15,20-dihydrosenecionan-11,16-dione | Generator |
|
|---|
| Chemical Formula | C18H27NO7 |
|---|
| Average Mass | 369.4140 Da |
|---|
| Monoisotopic Mass | 369.17875 Da |
|---|
| IUPAC Name | (1R,4S,6R,7R,17R)-4,7-dihydroxy-4-[(1R)-1-hydroxyethyl]-6,7-dimethyl-2,9-dioxa-14-azatricyclo[9.5.1.0^{14,17}]heptadec-11-ene-3,8-dione |
|---|
| Traditional Name | (1R,4S,6R,7R,17R)-4,7-dihydroxy-4-[(1R)-1-hydroxyethyl]-6,7-dimethyl-2,9-dioxa-14-azatricyclo[9.5.1.0^{14,17}]heptadec-11-ene-3,8-dione |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | C[C@@H](O)[C@@]1(O)C[C@@H](C)[C@@](C)(O)C(=O)OCC2=CCN3CC[C@@H](OC1=O)[C@@H]23 |
|---|
| InChI Identifier | InChI=1S/C18H27NO7/c1-10-8-18(24,11(2)20)16(22)26-13-5-7-19-6-4-12(14(13)19)9-25-15(21)17(10,3)23/h4,10-11,13-14,20,23-24H,5-9H2,1-3H3/t10-,11-,13-,14-,17-,18+/m1/s1 |
|---|
| InChI Key | FMWJEBGSMAOQNN-YLFNNMARSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as macrolides and analogues. These are organic compounds containing a lactone ring of at least twelve members. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Phenylpropanoids and polyketides |
|---|
| Class | Macrolides and analogues |
|---|
| Sub Class | Not Available |
|---|
| Direct Parent | Macrolides and analogues |
|---|
| Alternative Parents | |
|---|
| Substituents | - Senecionan-skeleton
- Macrolide
- Alkaloid or derivatives
- Pyrrolizine
- Dicarboxylic acid or derivatives
- N-alkylpyrrolidine
- Pyrrolidine
- Pyrroline
- Tertiary alcohol
- Amino acid or derivatives
- Carboxylic acid ester
- Lactone
- Secondary alcohol
- Tertiary amine
- Tertiary aliphatic amine
- Carboxylic acid derivative
- Oxacycle
- Azacycle
- Organoheterocyclic compound
- Hydrocarbon derivative
- Organooxygen compound
- Organonitrogen compound
- Organic oxide
- Organic nitrogen compound
- Organic oxygen compound
- Amine
- Alcohol
- Carbonyl group
- Aliphatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aliphatic heteropolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Cheng D, Kirk H, Vrieling K, Mulder PP, Klinkhamer PG: The relationship between structurally different pyrrolizidine alkaloids and western flower thrips resistance in F(2) hybrids of Jacobaea vulgaris and Jacobaea aquatica. J Chem Ecol. 2011 Oct;37(10):1071-80. doi: 10.1007/s10886-011-0021-6. Epub 2011 Oct 4. [PubMed:21969251 ]
- Taenzer J, Gehling M, Klevenhusen F, Saltzmann J, Danicke S, These A: Rumen Metabolism of Senecio Pyrrolizidine Alkaloids May Explain Why Cattle Tolerate Higher Doses Than Monogastric Species. J Agric Food Chem. 2022 Aug 24;70(33):10111-10120. doi: 10.1021/acs.jafc.2c01332. Epub 2022 Aug 10. [PubMed:35948427 ]
- Ma H, Yang L, Wang C, Wang Z: [Pyrrolizidine alkaloids of Senecio cannabifolius var. integrilifolius]. Zhongguo Zhong Yao Za Zhi. 2011 Jan;36(2):166-8. [PubMed:21506416 ]
- Tundis R, Loizzo MR, Statti GA, Passalacqua NG, Peruzzi L, Menichini F: Pyrrolizidine alkaloid profiles of the Senecio cineraria group (Asteraceae). Z Naturforsch C J Biosci. 2007 Jul-Aug;62(7-8):467-72. doi: 10.1515/znc-2007-7-802. [PubMed:17913058 ]
- Joosten L, Cheng D, Mulder PP, Vrieling K, van Veen JA, Klinkhamer PG: The genotype dependent presence of pyrrolizidine alkaloids as tertiary amine in Jacobaea vulgaris. Phytochemistry. 2011 Feb;72(2-3):214-22. doi: 10.1016/j.phytochem.2010.11.013. Epub 2010 Dec 13. [PubMed:21159354 ]
- Mulder PPJ, Klijnstra MD, Goselink RMA, van Vuuren AM, Cone JW, Stoopen G, Hoogenboom RLAP: Transfer of pyrrolizidine alkaloids from ragwort, common groundsel and viper's bugloss to milk from dairy cows. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2020 Nov;37(11):1906-1921. doi: 10.1080/19440049.2020.1798028. Epub 2020 Sep 1. [PubMed:32870736 ]
- Hoogenboom LA, Mulder PP, Zeilmaker MJ, van den Top HJ, Remmelink GJ, Brandon EF, Klijnstra M, Meijer GA, Schothorst R, Van Egmond HP: Carry-over of pyrrolizidine alkaloids from feed to milk in dairy cows. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2011 Mar;28(3):359-72. doi: 10.1080/19440049.2010.547521. [PubMed:21360378 ]
- Wiedenfeld H, Montes C, Tawil B, Contin A, Wynsma R: Pyrrolizidine alkaloid level in Senecio bicolor (Wilid.) Tod, ssp. cineraria (DC.) from middle Europe. Pharmazie. 2006 Jun;61(6):559-61. [PubMed:16826978 ]
- LOTUS database [Link]
|
|---|