Np mrd loader

Record Information
Version2.0
Created at2022-09-02 15:42:23 UTC
Updated at2022-09-02 15:42:23 UTC
NP-MRD IDNP0158167
Secondary Accession NumbersNone
Natural Product Identification
Common Name(1r,5as,7s,9as,9bs,11ar)-1-[(2r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-7-ol
DescriptionSTIGMASTANOL, also known as beta-sitostanol or dihydrositosterol, belongs to the class of organic compounds known as stigmastanes and derivatives. These are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. (1r,5as,7s,9as,9bs,11ar)-1-[(2r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-7-ol is found in Arabidopsis thaliana, Avena sativa, Beta vulgaris, Carthamus tinctorius, Dracaena cinnabari, Euphorbia peplus, Hippophae rhamnoides, Hoslundia opposita, Nigella sativa, Ornithopus sativus, Phoenix canariensis, Piper nigrum, Tetragonia tetragonoides, Thomandersia laurifolia, Trichosanthes tricuspidata and Trigonella cretica. (1r,5as,7s,9as,9bs,11ar)-1-[(2r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-7-ol was first documented in 2016 (PMID: 27079626). Based on a literature review a significant number of articles have been published on STIGMASTANOL (PMID: 32422925) (PMID: 35335249) (PMID: 34121028) (PMID: 33860415) (PMID: 32971340) (PMID: 35541380).
Structure
Thumb
Synonyms
ValueSource
24 alpha-Ethyl-5 beta-cholestan-3 alpha-olMeSH
beta-SitostanolMeSH
SitostanolMeSH
Stigmastanol, (3beta,5beta,24S)-isomerMeSH
24 alpha-Ethyl-5 alpha-cholestan-3 beta-olMeSH
DihydrositosterolMeSH
Chemical FormulaC29H52O
Average Mass416.7340 Da
Monoisotopic Mass416.40182 Da
IUPAC Name(1S,2S,5S,7S,14R,15R)-14-[(2R)-5-ethyl-6-methylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-5-ol
Traditional Name(1S,2S,5S,7S,14R,15R)-14-[(2R)-5-ethyl-6-methylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-5-ol
CAS Registry NumberNot Available
SMILES
CCC(CC[C@@H](C)[C@H]1CCC2C3CC[C@H]4C[C@@H](O)CC[C@]4(C)[C@H]3CC[C@]12C)C(C)C
InChI Identifier
InChI=1S/C29H52O/c1-7-21(19(2)3)9-8-20(4)25-12-13-26-24-11-10-22-18-23(30)14-16-28(22,5)27(24)15-17-29(25,26)6/h19-27,30H,7-18H2,1-6H3/t20-,21?,22+,23+,24?,25-,26?,27+,28+,29-/m1/s1
InChI KeyLGJMUZUPVCAVPU-BMPQYNDWSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Arabidopsis thalianaLOTUS Database
Avena sativaLOTUS Database
Beta vulgarisLOTUS Database
Carthamus tinctoriusLOTUS Database
Dracaena cinnabariLOTUS Database
Euphorbia Euphorbia peplusLOTUS Database
Hippophae rhamnoidesLOTUS Database
Hoslundia oppositaLOTUS Database
Nigella sativaLOTUS Database
Ornithopus sativusLOTUS Database
Phoenix canariensisLOTUS Database
Piper nigrumLOTUS Database
Tetragonia tetragonioidesLOTUS Database
Thomandersia laurifoliaLOTUS Database
Trichosanthes tricuspidataLOTUS Database
Trigonella creticaLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as stigmastanes and derivatives. These are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassSteroids and steroid derivatives
Sub ClassStigmastanes and derivatives
Direct ParentStigmastanes and derivatives
Alternative Parents
Substituents
  • Triterpenoid
  • Stigmastane-skeleton
  • C24-propyl-sterol-skeleton
  • 3-beta-hydroxysteroid
  • Hydroxysteroid
  • 3-hydroxysteroid
  • Cyclic alcohol
  • Secondary alcohol
  • Organic oxygen compound
  • Hydrocarbon derivative
  • Organooxygen compound
  • Alcohol
  • Aliphatic homopolycyclic compound
Molecular FrameworkAliphatic homopolycyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP7.23ALOGPS
logP8.25ChemAxon
logS-7.6ALOGPS
pKa (Strongest Acidic)18.3ChemAxon
pKa (Strongest Basic)-1.4ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count1ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area20.23 ŲChemAxon
Rotatable Bond Count6ChemAxon
Refractivity128.92 m³·mol⁻¹ChemAxon
Polarizability54.97 ųChemAxon
Number of Rings4ChemAxon
BioavailabilityYesChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00032163
Chemspider ID30771722
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound91746710
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Rocchetti G, Rizzi C, Pasini G, Lucini L, Giuberti G, Simonato B: Effect of Moringa oleifera L. Leaf Powder Addition on the Phenolic Bioaccessibility and on In Vitro Starch Digestibility of Durum Wheat Fresh Pasta. Foods. 2020 May 14;9(5):628. doi: 10.3390/foods9050628. [PubMed:32422925 ]
  2. Huynh N, Beltrame G, Tarvainen M, Suomela JP, Yang B: Supercritical CO(2) Extraction of Triterpenoids from Chaga Sterile Conk of Inonotus obliquus. Molecules. 2022 Mar 14;27(6):1880. doi: 10.3390/molecules27061880. [PubMed:35335249 ]
  3. Kayanan BUR, Sagum RS: Microwave and Ultrasound Pretreatment of Moringa oleifera Lam. Seeds: Effects on Oil Expression, Oil Quality, and Bioactive Component. J Oleo Sci. 2021 Jul 1;70(7):875-884. doi: 10.5650/jos.ess20357. Epub 2021 Jun 11. [PubMed:34121028 ]
  4. Torres-Santos PT, Farias IF, Almeida MD, Passos GS, Ribeiro LAA, Rolim LA, Pontes MC, Almeida JRGS, Horta MC: Acaricidal efficacy and chemical study of hexane extracts of the leaves of Neoglaziovia variegata (Bromeliaceae) against the tick Rhipicephalus microplus. Exp Appl Acarol. 2021 May;84(1):263-270. doi: 10.1007/s10493-021-00611-9. Epub 2021 Apr 15. [PubMed:33860415 ]
  5. Gominho J, Lourenco A, Marques AV, Pereira H: An extensive study on the chemical diversity of lipophilic extractives from Eucalyptus globulus wood. Phytochemistry. 2020 Dec;180:112520. doi: 10.1016/j.phytochem.2020.112520. Epub 2020 Sep 21. [PubMed:32971340 ]
  6. Chen J, Tang G, Zhou J, Liu W, Bi Y: The characterization of soybean germ oil and the antioxidative activity of its phytosterols. RSC Adv. 2019 Dec 4;9(68):40109-40117. doi: 10.1039/c9ra08771k. eCollection 2019 Dec 2. [PubMed:35541380 ]
  7. Chen J, Le XC, Zhu L: Metabolomics and transcriptomics reveal defense mechanism of rice (Oryza sativa) grains under stress of 2,2',4,4'-tetrabromodiphenyl ether. Environ Int. 2019 Dec;133(Pt A):105154. doi: 10.1016/j.envint.2019.105154. Epub 2019 Sep 12. [PubMed:31521816 ]
  8. Tan DC, Kassim NK, Ismail IS, Hamid M, Ahamad Bustamam MS: Identification of Antidiabetic Metabolites from Paederia foetida L. Twigs by Gas Chromatography-Mass Spectrometry-Based Metabolomics and Molecular Docking Study. Biomed Res Int. 2019 May 29;2019:7603125. doi: 10.1155/2019/7603125. eCollection 2019. [PubMed:31275982 ]
  9. de Melo MG, da Silva BA, Costa GS, da Silva Neto JCA, Soares PK, Val AL, Chaar JDS, Koolen HHF, Bataglion GA: Sewage contamination of Amazon streams crossing Manaus (Brazil) by sterol biomarkers. Environ Pollut. 2019 Jan;244:818-826. doi: 10.1016/j.envpol.2018.10.055. Epub 2018 Oct 18. [PubMed:30390455 ]
  10. Hargan KE, Stewart EM, Michelutti N, Grooms C, Kimpe LE, Mallory ML, Smol JP, Blais JM: Sterols and stanols as novel tracers of waterbird population dynamics in freshwater ponds. Proc Biol Sci. 2018 Apr 25;285(1877):20180631. doi: 10.1098/rspb.2018.0631. [PubMed:29695442 ]
  11. Fibigr J, Satinsky D, Solich P: A UHPLC method for the rapid separation and quantification of phytosterols using tandem UV/Charged aerosol detection - A comparison of both detection techniques. J Pharm Biomed Anal. 2017 Jun 5;140:274-280. doi: 10.1016/j.jpba.2017.03.057. Epub 2017 Mar 30. [PubMed:28384622 ]
  12. Prost K, Birk JJ, Lehndorff E, Gerlach R, Amelung W: Steroid Biomarkers Revisited - Improved Source Identification of Faecal Remains in Archaeological Soil Material. PLoS One. 2017 Jan 6;12(1):e0164882. doi: 10.1371/journal.pone.0164882. eCollection 2017. [PubMed:28060808 ]
  13. Coreta-Gomes FM, Vaz WL, Wasielewski E, Geraldes CF, Moreno MJ: Quantification of Cholesterol Solubilized in Dietary Micelles: Dependence on Human Bile Salt Variability and the Presence of Dietary Food Ingredients. Langmuir. 2016 May 10;32(18):4564-74. doi: 10.1021/acs.langmuir.6b00723. Epub 2016 Apr 26. [PubMed:27079626 ]
  14. LOTUS database [Link]