| Record Information |
|---|
| Version | 2.0 |
|---|
| Created at | 2022-09-02 15:42:23 UTC |
|---|
| Updated at | 2022-09-02 15:42:23 UTC |
|---|
| NP-MRD ID | NP0158167 |
|---|
| Secondary Accession Numbers | None |
|---|
| Natural Product Identification |
|---|
| Common Name | (1r,5as,7s,9as,9bs,11ar)-1-[(2r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-7-ol |
|---|
| Description | STIGMASTANOL, also known as beta-sitostanol or dihydrositosterol, belongs to the class of organic compounds known as stigmastanes and derivatives. These are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. (1r,5as,7s,9as,9bs,11ar)-1-[(2r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-7-ol is found in Arabidopsis thaliana, Avena sativa, Beta vulgaris, Carthamus tinctorius, Dracaena cinnabari, Euphorbia peplus, Hippophae rhamnoides, Hoslundia opposita, Nigella sativa, Ornithopus sativus, Phoenix canariensis, Piper nigrum, Tetragonia tetragonoides, Thomandersia laurifolia, Trichosanthes tricuspidata and Trigonella cretica. (1r,5as,7s,9as,9bs,11ar)-1-[(2r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-7-ol was first documented in 2016 (PMID: 27079626). Based on a literature review a significant number of articles have been published on STIGMASTANOL (PMID: 32422925) (PMID: 35335249) (PMID: 34121028) (PMID: 33860415) (PMID: 32971340) (PMID: 35541380). |
|---|
| Structure | CCC(CC[C@@H](C)[C@H]1CCC2C3CC[C@H]4C[C@@H](O)CC[C@]4(C)[C@H]3CC[C@]12C)C(C)C InChI=1S/C29H52O/c1-7-21(19(2)3)9-8-20(4)25-12-13-26-24-11-10-22-18-23(30)14-16-28(22,5)27(24)15-17-29(25,26)6/h19-27,30H,7-18H2,1-6H3/t20-,21?,22+,23+,24?,25-,26?,27+,28+,29-/m1/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| 24 alpha-Ethyl-5 beta-cholestan-3 alpha-ol | MeSH | | beta-Sitostanol | MeSH | | Sitostanol | MeSH | | Stigmastanol, (3beta,5beta,24S)-isomer | MeSH | | 24 alpha-Ethyl-5 alpha-cholestan-3 beta-ol | MeSH | | Dihydrositosterol | MeSH |
|
|---|
| Chemical Formula | C29H52O |
|---|
| Average Mass | 416.7340 Da |
|---|
| Monoisotopic Mass | 416.40182 Da |
|---|
| IUPAC Name | (1S,2S,5S,7S,14R,15R)-14-[(2R)-5-ethyl-6-methylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-5-ol |
|---|
| Traditional Name | (1S,2S,5S,7S,14R,15R)-14-[(2R)-5-ethyl-6-methylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-5-ol |
|---|
| CAS Registry Number | Not Available |
|---|
| SMILES | CCC(CC[C@@H](C)[C@H]1CCC2C3CC[C@H]4C[C@@H](O)CC[C@]4(C)[C@H]3CC[C@]12C)C(C)C |
|---|
| InChI Identifier | InChI=1S/C29H52O/c1-7-21(19(2)3)9-8-20(4)25-12-13-26-24-11-10-22-18-23(30)14-16-28(22,5)27(24)15-17-29(25,26)6/h19-27,30H,7-18H2,1-6H3/t20-,21?,22+,23+,24?,25-,26?,27+,28+,29-/m1/s1 |
|---|
| InChI Key | LGJMUZUPVCAVPU-BMPQYNDWSA-N |
|---|
| Experimental Spectra |
|---|
|
| Not Available | | Predicted Spectra |
|---|
|
| | Spectrum Type | Description | Depositor ID | Depositor Organization | Depositor | Deposition Date | View |
|---|
| 1D NMR | 13C NMR Spectrum (1D, 25 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 252 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 50 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 75 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 101 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 126 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 151 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 176 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 201 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 13C NMR Spectrum (1D, 226 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum | | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, H2O, predicted) | Wishart Lab | Wishart Lab | David Wishart | 2021-06-20 | View Spectrum |
| | Chemical Shift Submissions |
|---|
|
| Not Available | | Species |
|---|
| Species of Origin | |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as stigmastanes and derivatives. These are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Lipids and lipid-like molecules |
|---|
| Class | Steroids and steroid derivatives |
|---|
| Sub Class | Stigmastanes and derivatives |
|---|
| Direct Parent | Stigmastanes and derivatives |
|---|
| Alternative Parents | |
|---|
| Substituents | - Triterpenoid
- Stigmastane-skeleton
- C24-propyl-sterol-skeleton
- 3-beta-hydroxysteroid
- Hydroxysteroid
- 3-hydroxysteroid
- Cyclic alcohol
- Secondary alcohol
- Organic oxygen compound
- Hydrocarbon derivative
- Organooxygen compound
- Alcohol
- Aliphatic homopolycyclic compound
|
|---|
| Molecular Framework | Aliphatic homopolycyclic compounds |
|---|
| External Descriptors | Not Available |
|---|
| Physical Properties |
|---|
| State | Not Available |
|---|
| Experimental Properties | | Property | Value | Reference |
|---|
| Melting Point | Not Available | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Predicted Properties | |
|---|
| General References | - Rocchetti G, Rizzi C, Pasini G, Lucini L, Giuberti G, Simonato B: Effect of Moringa oleifera L. Leaf Powder Addition on the Phenolic Bioaccessibility and on In Vitro Starch Digestibility of Durum Wheat Fresh Pasta. Foods. 2020 May 14;9(5):628. doi: 10.3390/foods9050628. [PubMed:32422925 ]
- Huynh N, Beltrame G, Tarvainen M, Suomela JP, Yang B: Supercritical CO(2) Extraction of Triterpenoids from Chaga Sterile Conk of Inonotus obliquus. Molecules. 2022 Mar 14;27(6):1880. doi: 10.3390/molecules27061880. [PubMed:35335249 ]
- Kayanan BUR, Sagum RS: Microwave and Ultrasound Pretreatment of Moringa oleifera Lam. Seeds: Effects on Oil Expression, Oil Quality, and Bioactive Component. J Oleo Sci. 2021 Jul 1;70(7):875-884. doi: 10.5650/jos.ess20357. Epub 2021 Jun 11. [PubMed:34121028 ]
- Torres-Santos PT, Farias IF, Almeida MD, Passos GS, Ribeiro LAA, Rolim LA, Pontes MC, Almeida JRGS, Horta MC: Acaricidal efficacy and chemical study of hexane extracts of the leaves of Neoglaziovia variegata (Bromeliaceae) against the tick Rhipicephalus microplus. Exp Appl Acarol. 2021 May;84(1):263-270. doi: 10.1007/s10493-021-00611-9. Epub 2021 Apr 15. [PubMed:33860415 ]
- Gominho J, Lourenco A, Marques AV, Pereira H: An extensive study on the chemical diversity of lipophilic extractives from Eucalyptus globulus wood. Phytochemistry. 2020 Dec;180:112520. doi: 10.1016/j.phytochem.2020.112520. Epub 2020 Sep 21. [PubMed:32971340 ]
- Chen J, Tang G, Zhou J, Liu W, Bi Y: The characterization of soybean germ oil and the antioxidative activity of its phytosterols. RSC Adv. 2019 Dec 4;9(68):40109-40117. doi: 10.1039/c9ra08771k. eCollection 2019 Dec 2. [PubMed:35541380 ]
- Chen J, Le XC, Zhu L: Metabolomics and transcriptomics reveal defense mechanism of rice (Oryza sativa) grains under stress of 2,2',4,4'-tetrabromodiphenyl ether. Environ Int. 2019 Dec;133(Pt A):105154. doi: 10.1016/j.envint.2019.105154. Epub 2019 Sep 12. [PubMed:31521816 ]
- Tan DC, Kassim NK, Ismail IS, Hamid M, Ahamad Bustamam MS: Identification of Antidiabetic Metabolites from Paederia foetida L. Twigs by Gas Chromatography-Mass Spectrometry-Based Metabolomics and Molecular Docking Study. Biomed Res Int. 2019 May 29;2019:7603125. doi: 10.1155/2019/7603125. eCollection 2019. [PubMed:31275982 ]
- de Melo MG, da Silva BA, Costa GS, da Silva Neto JCA, Soares PK, Val AL, Chaar JDS, Koolen HHF, Bataglion GA: Sewage contamination of Amazon streams crossing Manaus (Brazil) by sterol biomarkers. Environ Pollut. 2019 Jan;244:818-826. doi: 10.1016/j.envpol.2018.10.055. Epub 2018 Oct 18. [PubMed:30390455 ]
- Hargan KE, Stewart EM, Michelutti N, Grooms C, Kimpe LE, Mallory ML, Smol JP, Blais JM: Sterols and stanols as novel tracers of waterbird population dynamics in freshwater ponds. Proc Biol Sci. 2018 Apr 25;285(1877):20180631. doi: 10.1098/rspb.2018.0631. [PubMed:29695442 ]
- Fibigr J, Satinsky D, Solich P: A UHPLC method for the rapid separation and quantification of phytosterols using tandem UV/Charged aerosol detection - A comparison of both detection techniques. J Pharm Biomed Anal. 2017 Jun 5;140:274-280. doi: 10.1016/j.jpba.2017.03.057. Epub 2017 Mar 30. [PubMed:28384622 ]
- Prost K, Birk JJ, Lehndorff E, Gerlach R, Amelung W: Steroid Biomarkers Revisited - Improved Source Identification of Faecal Remains in Archaeological Soil Material. PLoS One. 2017 Jan 6;12(1):e0164882. doi: 10.1371/journal.pone.0164882. eCollection 2017. [PubMed:28060808 ]
- Coreta-Gomes FM, Vaz WL, Wasielewski E, Geraldes CF, Moreno MJ: Quantification of Cholesterol Solubilized in Dietary Micelles: Dependence on Human Bile Salt Variability and the Presence of Dietary Food Ingredients. Langmuir. 2016 May 10;32(18):4564-74. doi: 10.1021/acs.langmuir.6b00723. Epub 2016 Apr 26. [PubMed:27079626 ]
- LOTUS database [Link]
|
|---|