Np mrd loader

Record Information
Version1.0
Created at2021-06-21 00:37:51 UTC
Updated at2021-06-30 00:18:39 UTC
NP-MRD IDNP0043140
Secondary Accession NumbersNone
Natural Product Identification
Common Nametriptersinine J
Provided ByJEOL DatabaseJEOL Logo
DescriptionTriptersinin J belongs to the class of organic compounds known as agarofurans. These are organic compounds containing an agarofuran moiety( a three-ring system, with core fragment oxatricyclo[7.2.1.0^{1,6}]Dodec-2-ene). triptersinine J is found in Tripterygium wilfordii. It was first documented in 2021 (PMID: 34130226). Based on a literature review a significant number of articles have been published on Triptersinin J (PMID: 34129877) (PMID: 34129355) (PMID: 34129348) (PMID: 34128957) (PMID: 34128829) (PMID: 34128689).
Structure
Thumb
SynonymsNot Available
Chemical FormulaC29H34O13
Average Mass590.5780 Da
Monoisotopic Mass590.19994 Da
IUPAC Name(1S,2S,5S,6S,7S,8R,9R,12R)-5-(acetyloxy)-6-[(acetyloxy)methyl]-12-(furan-3-carbonyloxy)-2,8-dihydroxy-2,10,10-trimethyl-11-oxatricyclo[7.2.1.0^{1,6}]dodecan-7-yl furan-3-carboxylate
Traditional Name(1S,2S,5S,6S,7S,8R,9R,12R)-5-(acetyloxy)-6-[(acetyloxy)methyl]-12-(furan-3-carbonyloxy)-2,8-dihydroxy-2,10,10-trimethyl-11-oxatricyclo[7.2.1.0^{1,6}]dodecan-7-yl furan-3-carboxylate
CAS Registry NumberNot Available
SMILES
[H]O[C@]1([H])[C@]2([H])[C@@]([H])(OC(=O)C3=C([H])OC([H])=C3[H])[C@]3(OC2(C([H])([H])[H])C([H])([H])[H])[C@](O[H])(C([H])([H])[H])C([H])([H])C([H])([H])[C@]([H])(OC(=O)C([H])([H])[H])[C@@]3(C([H])([H])OC(=O)C([H])([H])[H])[C@]1([H])OC(=O)C1=C([H])OC([H])=C1[H]
InChI Identifier
InChI=1S/C29H34O13/c1-15(30)38-14-28-19(39-16(2)31)6-9-27(5,35)29(28)22(40-24(33)17-7-10-36-12-17)20(26(3,4)42-29)21(32)23(28)41-25(34)18-8-11-37-13-18/h7-8,10-13,19-23,32,35H,6,9,14H2,1-5H3/t19-,20+,21+,22+,23+,27-,28-,29-/m0/s1
InChI KeyCSQQRQHTRPQIJM-LNTHSHFBSA-N
Experimental Spectra
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 600 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 125 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 150 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 250 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 175 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 100 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 225 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 200 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 25 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, Chloroform-d, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 100 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 200 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 300 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 400 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 500 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 700 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 800 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 900 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 1000 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, CDCl3, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Predicted Spectra
Not Available
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Tripterygium wilfordiiJEOL database
    • Wang, C., et al, J. Nat. Prod. 76, 85 (2013)
Chemical Taxonomy
Description Belongs to the class of organic compounds known as agarofurans. These are organic compounds containing an agarofuran moiety( a three-ring system, with core fragment oxatricyclo[7.2.1.0^{1,6}]Dodec-2-ene).
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassPrenol lipids
Sub ClassSesquiterpenoids
Direct ParentAgarofurans
Alternative Parents
Substituents
  • Agarofuran
  • Tetracarboxylic acid or derivatives
  • Furoic acid ester
  • Furoic acid or derivatives
  • Furan-3-carboxylic acid ester
  • Furan-3-carboxylic acid or derivatives
  • Oxepane
  • Cyclic alcohol
  • Furan
  • Tertiary alcohol
  • Tetrahydrofuran
  • Heteroaromatic compound
  • Secondary alcohol
  • Carboxylic acid ester
  • Ether
  • Dialkyl ether
  • Organoheterocyclic compound
  • Oxacycle
  • Carboxylic acid derivative
  • Organic oxide
  • Organooxygen compound
  • Alcohol
  • Organic oxygen compound
  • Hydrocarbon derivative
  • Carbonyl group
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP2.19ALOGPS
logP1.36ChemAxon
logS-3.5ALOGPS
pKa (Strongest Acidic)13.44ChemAxon
pKa (Strongest Basic)-2.8ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count7ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area181.17 ŲChemAxon
Rotatable Bond Count11ChemAxon
Refractivity138.1 m³·mol⁻¹ChemAxon
Polarizability57.85 ųChemAxon
Number of Rings5ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleYesChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00056203
Chemspider ID29419467
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound71524363
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Dos Santos Petry L, Pillar Mayer JC, de Giacommeti M, Teixeira de Oliveira D, Razia Garzon L, Martiele Engelmann A, Magalhaes de Matos AFI, Dellamea Baldissera M, Dornelles L, Melazzo de Andrade C, Gonzalez Monteiro S: In vitro and in vivo trypanocidal activity of a benzofuroxan derivative against Trypanosoma cruzi. Exp Parasitol. 2021 Jul-Aug;226-227:108125. doi: 10.1016/j.exppara.2021.108125. Epub 2021 Jun 12. [PubMed:34129877 ]
  2. Gabes M, Stute P, Apfelbacher C: Validation of the German Day-to-Day Impact of Vaginal Aging (DIVA) Questionnaire in Peri- and Postmenopausal Women. Sex Med. 2021 Jun 12;9(4):100382. doi: 10.1016/j.esxm.2021.100382. [PubMed:34130226 ]
  3. Mezzalama M, Guarnaccia V, Martino I, Tabome G, Gullino ML: First report of Fusarium commune causing root and crown rot on maize in Italy. Plant Dis. 2021 Jun 15. doi: 10.1094/PDIS-01-21-0075-PDN. [PubMed:34129355 ]
  4. Ilyas N, Yang YJ, Liu W, Li X, Pu W, Singh RPP, Li Y: First Report of Bacterial Rot Caused by Pantoea endophytica on Tobacco in Liuyang, China. Plant Dis. 2021 Jun 15. doi: 10.1094/PDIS-04-21-0737-PDN. [PubMed:34129348 ]
  5. Koh YWH, Stow JL: A Leep1 into migration and macropinocytosis. J Cell Biol. 2021 Jul 5;220(7). pii: 212350. doi: 10.1083/jcb.202105141. Epub 2021 Jun 15. [PubMed:34128957 ]
  6. Davies AH, Zoubeidi A: Targeting androgen receptor signaling: a historical perspective. Endocr Relat Cancer. 2021 Jul 15;28(8):T11-T18. doi: 10.1530/ERC-21-0116. [PubMed:34128829 ]
  7. Authors unspecified: Correction to: Sexual Health in Women, by Kling JM et al. J Women's Health 2021;30(3):301-304. DOI: 10.1089/jwh.2020.8730. J Womens Health (Larchmt). 2021 Jun;30(6):910. doi: 10.1089/jwh.2020.8730.correx. [PubMed:34128689 ]
  8. Xu QF, Liu BL, Ye MY, Long LS, Zheng LS: Magnetocaloric Effect and Thermal Conductivity of a 3D Coordination Polymer of [Gd(HCOO)(C2O4)]n. Inorg Chem. 2021 Jul 5;60(13):9259-9262. doi: 10.1021/acs.inorgchem.1c01152. Epub 2021 Jun 15. [PubMed:34128660 ]
  9. Nazarov DI, Islyaikin MK, Ivanov EN, Koifman OI, Batov MS, Zorina LV, Khasanov SS, Shestakov AF, Yudanova EI, Zhabanov YA, Vyalkin DA, Otsuka A, Yamochi H, Kitagawa H, Torres T, Konarev DV: Dianionic States of Trithiadodecaazahexaphyrin Complexes with Homotrinuclear M(II)3O Clusters (M = Ni and Cu): Crystal Structures, Metal- Or Macrocycle-Centered Reduction, and Doublet-Quartet Transitions in the Dianions. Inorg Chem. 2021 Jul 5;60(13):9857-9868. doi: 10.1021/acs.inorgchem.1c01132. Epub 2021 Jun 15. [PubMed:34128654 ]
  10. Tang C, Ma X, Wang JY, Zhang X, Liao R, Ma Y, Wang P, Wang P, Wang T, Zhang F, Zheng Q: High-Performance Ladder-Type Heteroheptacene-Based Nonfullerene Acceptors Enabled by Asymmetric Cores with Enhanced Noncovalent Intramolecular Interactions. Angew Chem Int Ed Engl. 2021 Aug 23;60(35):19314-19323. doi: 10.1002/anie.202105861. Epub 2021 Jul 20. [PubMed:34128575 ]
  11. Kim Y, Han M, Lee C, Park S: Singlet Fission Dynamics of Colloidal Nanoparticles of a Perylenediimide Derivative in Solutions. J Phys Chem B. 2021 Jul 29;125(29):7967-7974. doi: 10.1021/acs.jpcb.1c03285. Epub 2021 Jun 15. [PubMed:34128379 ]
  12. Sacharz J, Perez-Guaita D, Kansiz M, Nazeer SS, Weselucha-Birczynska A, Petratos S, Wood BR, Heraud P: Correction: Empirical study on the effects of acquisition parameters for FTIR hyperspectral imaging of brain tissue. Anal Methods. 2021 Jul 8;13(26):3001. doi: 10.1039/d1ay90074a. [PubMed:34128003 ]
  13. Nguyen LT, Saad S, Shi Y, Wang R, Chou ASY, Gill A, Yao Y, Jarolimek W, Pollock CA: Lysyl oxidase inhibitors attenuate cyclosporin A-induced nephropathy in mouse. Sci Rep. 2021 Jun 14;11(1):12437. doi: 10.1038/s41598-021-91772-5. [PubMed:34127702 ]
  14. Tao Y, Wang F, Xu Z, Lu X, Yang Y, Wu J, Yao C, Yi F, Li J, Huang Z, Liu Y: Gasdermin D in peripheral nerves: the pyroptotic microenvironment inhibits nerve regeneration. Cell Death Discov. 2021 Jun 14;7(1):144. doi: 10.1038/s41420-021-00529-6. [PubMed:34127647 ]
  15. Sitko S, Cirer-Sastre R, Corbi F, Lopez-Laval I: Functional Threshold Power as an Alternative to Lactate Thresholds in Road Cycling. J Strength Cond Res. 2021 Jun 11. pii: 00124278-900000000-93969. doi: 10.1519/JSC.0000000000004070. [PubMed:34127613 ]
  16. Wang, C., et al. (2013). Wang, C., et al, J. Nat. Prod. 76, 85 (2013). J. Nat. Prod..