Np mrd loader

You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on NP-MRD.
Record Information
Created at2005-11-16 15:48:42 UTC
Updated at2021-08-19 23:58:34 UTC
NP-MRD IDNP0000908
Secondary Accession NumbersNone
Natural Product Identification
Common NameTaurine
DescriptionTaurine is a sulfur amino acid like methionine, cystine, cysteine and homocysteine. It is a lesser-known amino acid because it is not incorporated into the structural building blocks of protein. Yet taurine is an essential amino acid in pre-term and newborn infants of humans and many other species. Adults can synthesize their own taurine, yet are probably dependent in part on dietary taurine. Taurine is abundant in the brain, heart, breast, gallbladder and kidney and has important roles in health and disease in these organs. Taurine has many diverse biological functions serving as a neurotransmitter in the brain, a stabilizer of cell membranes and a facilitator in the transport of ions such as sodium, potassium, calcium and magnesium. Taurine is highly concentrated in animal and fish protein, which are good sources of dietary taurine. It can be synthesized by the body from cysteine when vitamin B6 is present. Deficiency of taurine occurs in premature infants and neonates fed formula milk, and in various disease states. Inborn errors of taurine metabolism have been described. OMIM 168605 , an unusual neuropsychiatric disorder inherited in an autosomal dominant fashion through 3 generations of a family. Symptoms began late in the fifth decade in 6 affected persons and death occurred after 4 to 6 years. The earliest and most prominent symptom was mental depression not responsive to antidepressant drugs or electroconvulsive therapy. Sleep disturbances, exhaustion and marked weight loss were features. Parkinsonism developed later, and respiratory failure occurred terminally. OMIM 145350 describes congestive cardiomyopathy and markedly elevated urinary taurine levels (about 5 times normal). Other family members had late or holosystolic mitral valve prolapse and elevated urinary taurine values (about 2.5 Times normal). In 2 with mitral valve prolapse, congestive cardiomyopathy eventually developed while the amounts of urinary taurine doubled. Taurine, after GABA, is the second most important inhibitory neurotransmitter in the brain. Its inhibitory effect is one source of taurine's anticonvulsant and antianxiety properties. It also lowers glutamic acid in the brain, and preliminary clinical trials suggest taurine may be useful in some forms of epilepsy. Taurine in the brain is usually associated with zinc or manganese. The amino acids alanine and glutamic acid, as well as pantothenic acid, inhibit taurine metabolism while vitamins A and B6, zinc and manganese help build taurine. Cysteine and B6 are the nutrients most directly involved in taurine synthesis. Taurine levels have been found to decrease significantly in many depressed patients. One reason that the findings are not entirely clear is because taurine is often elevated in the blood of epileptics who need it. It is often difficult to distinguish compensatory changes in human biochemistry from true metabolic or deficiency disease. Low levels of taurine are found in retinitis pigmentosa. Taurine deficiency in experimental animals produces degeneration of light-sensitive cells. Therapeutic applications of taurine to eye disease are likely to be forthcoming. Taurine has many important metabolic roles. Supplements can stimulate prolactin and insulin release. The parathyroid gland makes a peptide hormone called glutataurine (glutamic acid-taurine), which further demonstrates taurine's role in endocrinology. Taurine increases bilirubin and cholesterol excretion in bile, critical to normal gallbladder function. It seems to inhibit the effect of morphine and potentiates the effects of opiate antagonists. Low plasma taurine levels have been found in a variety of conditions, i.E., Depression, hypertension, hypothyroidism, gout, institutionalized patients, infertility, obesity, kidney failure and others (http://Www.Dcnutrition.Com/AminoAcids/). Moreover, taurine is found to be associated with maple syrup urine disease, which is an inborn error of metabolism.
2-Aminoethanesulfonic acidChEBI
2-Aminoethyl sulfonateChEBI
Aminoethylsulfonic acidChEBI
beta-Aminoethylsulfonic acidChEBI
2-Aminoethanesulphonic acidGenerator
2-Aminoethyl sulfonic acidGenerator
2-Aminoethyl sulphonateGenerator
2-Aminoethyl sulphonic acidGenerator
Aminoethylsulphonic acidGenerator
b-Aminoethylsulfonic acidGenerator
b-Aminoethylsulphonic acidGenerator
beta-Aminoethylsulphonic acidGenerator
Β-aminoethylsulfonic acidGenerator
Β-aminoethylsulphonic acidGenerator
1-Aminoethane-2-sulfonic acidHMDB
2-Aminoethylsulfonic acidHMDB
Taurine hydrochlorideHMDB
Taurine zinc salt (2:1)HMDB
Taurine, monopotassium saltHMDB
Chemical FormulaC2H7NO3S
Average Mass125.1470 Da
Monoisotopic Mass125.01466 Da
IUPAC Name2-aminoethane-1-sulfonic acid
Traditional Nametaurine
CAS Registry Number107-35-7
InChI Identifier
Experimental Spectra
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, experimental)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
2D NMR[1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Predicted Spectra
Not Available
Chemical Shift Submissions
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 400 MHz, H2O, simulated)varshavi.d26@gmail.comNot AvailableNot Available2021-07-29View Spectrum
Species of Origin
Species NameSourceReference
Agelas oroidesLOTUS Database
Allium fistulosumLOTUS Database
Allium sativumFooDB
Anas platyrhynchosFooDB
Anser anserFooDB
Apis ceranaLOTUS Database
Artemisia afraLOTUS Database
Artemisia fragransLOTUS Database
Artemisia herba-albaLOTUS Database
Artemisia santolinifoliaLOTUS Database
Artemisia tauricaLOTUS Database
Axinella carteriLOTUS Database
Bison bisonFooDB
Bos taurusFooDB
Bos taurus X Bison bisonFooDB
Bubalus bubalisFooDB
Buthus martensi-
Cannabis sativaCannabisDB
      Not Available
Capra aegagrus hircusFooDB
Cervus canadensisFooDB
Chondrus crispusFooDB
Claviceps purpureaLOTUS Database
Daucus carota ssp. sativusFooDB
    • David M. Alabran, and Ahmed F. Mabrouk. Carrot flavor. Sugars and free nitrogenous compounds in f...
Dromaius novaehollandiaeFooDB
Equus caballusFooDB
Gallus gallusFooDB
Homo sapiensLOTUS Database
Lagopus mutaFooDB
Lentinus edodesFooDB
Lepus timidusFooDB
Lycium chinenseKNApSAcK Database
Melanitta fuscaFooDB
Meleagris gallopavoFooDB
Mus musculusLOTUS Database
Mycoplasmopsis bovisLOTUS Database
Mytilus edulisLOTUS Database
Neptunea antiquaLOTUS Database
Numida meleagrisFooDB
Opuntia ficus-indicaLOTUS Database
Ovis ariesFooDB
Petroselinum crispumFooDB
Phakellia fuscaLOTUS Database
Phasianus colchicusFooDB
Prunus domesticaLOTUS Database
Pseudostellaria heterophyllaLOTUS Database
Struthio camelusFooDB
Sus scrofaFooDB
Sus scrofa domesticaFooDB
Synechococcus elongatusLOTUS Database
Trypanosoma bruceiLOTUS Database
Species Where Detected
Species NameSourceReference
Axinella polypoidesKNApSAcK Database
Bos taurus domesticusKNApSAcK Database
Homo sapiens (Urine)KNApSAcK Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as organosulfonic acids. Organosulfonic acids are compounds containing the sulfonic acid group, which has the general structure RS(=O)2OH (R is not a hydrogen atom).
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassOrganic sulfonic acids and derivatives
Sub ClassOrganosulfonic acids and derivatives
Direct ParentOrganosulfonic acids
Alternative Parents
  • Alkanesulfonic acid
  • Sulfonyl
  • Organosulfonic acid
  • Organic nitrogen compound
  • Organic oxygen compound
  • Organopnictogen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Primary amine
  • Organosulfur compound
  • Organonitrogen compound
  • Primary aliphatic amine
  • Amine
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Physical Properties
Experimental Properties
Melting Point300 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility80.7 mg/mLNot Available
LogP-2.769 (est)The Good Scents Company Information System
Predicted Properties
Water Solubility105 g/LALOGPS
pKa (Strongest Acidic)-1.5ChemAxon
pKa (Strongest Basic)9.34ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area80.39 ŲChemAxon
Rotatable Bond Count2ChemAxon
Refractivity24.61 m³·mol⁻¹ChemAxon
Polarizability10.82 ųChemAxon
Number of Rings0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
DrugBank IDDB01956
Phenol Explorer Compound IDNot Available
FoodDB IDFDB003191
KNApSAcK IDC00048188
Chemspider ID1091
KEGG Compound IDC00245
BiGG ID34373
Wikipedia LinkTaurine
PubChem Compound1123
PDB IDNot Available
ChEBI ID15891
Good Scents IDrw1097201
General References
  1. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. doi: 10.1038/nature07762. [PubMed:19212411 ]
  2. Engelborghs S, Marescau B, De Deyn PP: Amino acids and biogenic amines in cerebrospinal fluid of patients with Parkinson's disease. Neurochem Res. 2003 Aug;28(8):1145-50. [PubMed:12834252 ]
  3. Hagenfeldt L, Bjerkenstedt L, Edman G, Sedvall G, Wiesel FA: Amino acids in plasma and CSF and monoamine metabolites in CSF: interrelationship in healthy subjects. J Neurochem. 1984 Mar;42(3):833-7. [PubMed:6198473 ]
  4. Peng CT, Wu KH, Lan SJ, Tsai JJ, Tsai FJ, Tsai CH: Amino acid concentrations in cerebrospinal fluid in children with acute lymphoblastic leukemia undergoing chemotherapy. Eur J Cancer. 2005 May;41(8):1158-63. Epub 2005 Apr 14. [PubMed:15911239 ]
  5. Cynober LA: Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance. Nutrition. 2002 Sep;18(9):761-6. [PubMed:12297216 ]
  6. Rainesalo S, Keranen T, Palmio J, Peltola J, Oja SS, Saransaari P: Plasma and cerebrospinal fluid amino acids in epileptic patients. Neurochem Res. 2004 Jan;29(1):319-24. [PubMed:14992292 ]
  7. Khan SA, Cox IJ, Hamilton G, Thomas HC, Taylor-Robinson SD: In vivo and in vitro nuclear magnetic resonance spectroscopy as a tool for investigating hepatobiliary disease: a review of H and P MRS applications. Liver Int. 2005 Apr;25(2):273-81. [PubMed:15780050 ]
  8. Vinton NE, Laidlaw SA, Ament ME, Kopple JD: Taurine concentrations in plasma, blood cells, and urine of children undergoing long-term total parenteral nutrition. Pediatr Res. 1987 Apr;21(4):399-403. [PubMed:3106924 ]
  9. Gonzalez-Quevedo A, Obregon F, Fernandez R, Santiesteban R, Serrano C, Lima L: Amino acid levels and ratios in serum and cerebrospinal fluid of patients with optic neuropathy in Cuba. Nutr Neurosci. 2001;4(1):51-62. [PubMed:11842876 ]
  10. Schneider SM, Joly F, Gehrardt MF, Badran AM, Myara A, Thuillier F, Coudray-Lucas C, Cynober L, Trivin F, Messing B: Taurine status and response to intravenous taurine supplementation in adults with short-bowel syndrome undergoing long-term parenteral nutrition: a pilot study. Br J Nutr. 2006 Aug;96(2):365-70. [PubMed:16923232 ]
  11. McCarty MF: Complementary vascular-protective actions of magnesium and taurine: a rationale for magnesium taurate. Med Hypotheses. 1996 Feb;46(2):89-100. [PubMed:8692051 ]
  12. Kopple JD, Vinton NE, Laidlaw SA, Ament ME: Effect of intravenous taurine supplementation on plasma, blood cell, and urine taurine concentrations in adults undergoing long-term parenteral nutrition. Am J Clin Nutr. 1990 Nov;52(5):846-53. [PubMed:2122710 ]
  13. McMahon GP, O'Kennedy R, Kelly MT: High-performance liquid chromatographic determination of taurine in human plasma using pre-column extraction and derivatization. J Pharm Biomed Anal. 1996 Jun;14(8-10):1287-94. [PubMed:8818047 ]
  14. Stover JF, Morganti-Kosmann MC, Lenzlinger PM, Stocker R, Kempski OS, Kossmann T: Glutamate and taurine are increased in ventricular cerebrospinal fluid of severely brain-injured patients. J Neurotrauma. 1999 Feb;16(2):135-42. [PubMed:10098958 ]
  15. Learn DB, Fried VA, Thomas EL: Taurine and hypotaurine content of human leukocytes. J Leukoc Biol. 1990 Aug;48(2):174-82. [PubMed:2370482 ]
  16. Miglis M, Wilder D, Reid T, Bakaltcheva I: Effect of taurine on platelets and the plasma coagulation system. Platelets. 2002 Feb;13(1):5-10. [PubMed:11918831 ]
  17. Axelson M, Ellis E, Mork B, Garmark K, Abrahamsson A, Bjorkhem I, Ericzon BG, Einarsson C: Bile acid synthesis in cultured human hepatocytes: support for an alternative biosynthetic pathway to cholic acid. Hepatology. 2000 Jun;31(6):1305-12. [PubMed:10827156 ]
  18. Hu S, Zhao X, Yin S, Meng J: [A study on the mechanism of taurine postponing the aging process of human fetal brain neural cells]. Wei Sheng Yan Jiu. 1997 Mar;26(2):98-101. [PubMed:10325611 ]
  19. Goodman HO, Shihabi Z, Oles KS: Antiepileptic drugs and plasma and platelet taurine in epilepsy. Epilepsia. 1989 Mar-Apr;30(2):201-7. [PubMed:2494044 ]
  20. Sturman JA, Messing JM, Rossi SS, Hofmann AF, Neuringer MD: Tissue taurine content and conjugated bile acid composition of rhesus monkey infants fed a human infant soy-protein formula with or without taurine supplementation for 3 months. Neurochem Res. 1988 Apr;13(4):311-6. [PubMed:3393260 ]
  21. Gonzalez-Quevedo A, Obregon F, Santiesteban Freixas R, Fernandez R, Lima L: [Amino acids as biochemical markers in epidemic and endemic optic neuropathies]. Rev Cubana Med Trop. 1998;50 Suppl:241-4. [PubMed:10349454 ]